lingvo.tasks.car.tools.export_kitti_detection module¶
Read saved Decoder’s outputs and convert to KITTI text format.
First, obtain a KITTI camera calibration file.
To export all detections from a single model:
python export_kitti_detection.py –decoder_path=/path/to/decoder_out_000103000 –calib_file=/tmp/kitti_test_calibs.npz –output_dir=/tmp/my-kitti-export-directory –logtostderr
— OR —
Export combined detections selected from multiple models:
python export_kitti_detection.py –car_decoder_path=/path/to/car_decoder_out –ped_decoder_path=/path/to/ped_decoder_out –cyc_decoder_path=/path/to/cyc_decoder_out –calib_file=/tmp/kitti_test_calibs.npz –output_dir=/tmp/my-kitti-export-directory –logtostderr
-
lingvo.tasks.car.tools.export_kitti_detection.LoadCalibData(fname)[source]¶ Load and parse calibration data from NPZ file.
-
lingvo.tasks.car.tools.export_kitti_detection.ExtractNpContent(np_dict, calib)[source]¶ Parse saved np arrays and convert 3D bboxes to camera0 coordinates.
- Parameters
np_dict – a dict of numpy arrays.
calib – a parsed calibration dictionary.
- Returns
location_camera: [N, 3]. [x, y, z] in camera0 coordinate.
dimension_camera: [N, 3]. The [height, width, length] of objects.
phi_camera: [N]. Rotation around y-axis in camera0 coodinate.
bboxes_2d: [N, 4]. The corresponding 2D bboxes in the image coordinate.
scores: [N]. Confidence scores for each box for the assigned class.
class_ids: [N]. The class id assigned to each box.
- Return type
A tuple of 6 ndarrays