1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//! Contains utility functions and traits to convert between vectors of [`u16`] bits and [`f16`] or
//! [`bf16`] vectors.
//!
//! The utility [`HalfBitsVecExt`] sealed extension trait is implemented for [`Vec<u16>`] vectors,
//! while the utility [`HalfFloatVecExt`] sealed extension trait is implemented for both
//! [`Vec<f16>`] and [`Vec<bf16>`] vectors. These traits provide efficient conversions and
//! reinterpret casting of larger buffers of floating point values, and are automatically included
//! in the [`prelude`][crate::prelude] module.
//!
//! This module is only available with the `std` or `alloc` feature.

use super::{bf16, f16, slice::HalfFloatSliceExt};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use core::mem;

/// Extensions to [`Vec<f16>`] and [`Vec<bf16>`] to support reinterpret operations.
///
/// This trait is sealed and cannot be implemented outside of this crate.
pub trait HalfFloatVecExt: private::SealedHalfFloatVec {
    /// Reinterprets a vector of [`f16`]or [`bf16`] numbers as a vector of [`u16`] bits.
    ///
    /// This is a zero-copy operation. The reinterpreted vector has the same memory location as
    /// `self`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use half::prelude::*;
    /// let float_buffer = vec![f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)];
    /// let int_buffer = float_buffer.reinterpret_into();
    ///
    /// assert_eq!(int_buffer, [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]);
    /// ```
    #[must_use]
    fn reinterpret_into(self) -> Vec<u16>;

    /// Converts all of the elements of a `[f32]` slice into a new [`f16`] or [`bf16`] vector.
    ///
    /// The conversion operation is vectorized over the slice, meaning the conversion may be more
    /// efficient than converting individual elements on some hardware that supports SIMD
    /// conversions. See [crate documentation][crate] for more information on hardware conversion
    /// support.
    ///
    /// # Examples
    /// ```rust
    /// # use half::prelude::*;
    /// let float_values = [1., 2., 3., 4.];
    /// let vec: Vec<f16> = Vec::from_f32_slice(&float_values);
    ///
    /// assert_eq!(vec, vec![f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)]);
    /// ```
    #[must_use]
    fn from_f32_slice(slice: &[f32]) -> Self;

    /// Converts all of the elements of a `[f64]` slice into a new [`f16`] or [`bf16`] vector.
    ///
    /// The conversion operation is vectorized over the slice, meaning the conversion may be more
    /// efficient than converting individual elements on some hardware that supports SIMD
    /// conversions. See [crate documentation][crate] for more information on hardware conversion
    /// support.
    ///
    /// # Examples
    /// ```rust
    /// # use half::prelude::*;
    /// let float_values = [1., 2., 3., 4.];
    /// let vec: Vec<f16> = Vec::from_f64_slice(&float_values);
    ///
    /// assert_eq!(vec, vec![f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)]);
    /// ```
    #[must_use]
    fn from_f64_slice(slice: &[f64]) -> Self;
}

/// Extensions to [`Vec<u16>`] to support reinterpret operations.
///
/// This trait is sealed and cannot be implemented outside of this crate.
pub trait HalfBitsVecExt: private::SealedHalfBitsVec {
    /// Reinterprets a vector of [`u16`] bits as a vector of [`f16`] or [`bf16`] numbers.
    ///
    /// `H` is the type to cast to, and must be either the [`f16`] or [`bf16`] type.
    ///
    /// This is a zero-copy operation. The reinterpreted vector has the same memory location as
    /// `self`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use half::prelude::*;
    /// let int_buffer = vec![f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()];
    /// let float_buffer = int_buffer.reinterpret_into::<f16>();
    ///
    /// assert_eq!(float_buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]);
    /// ```
    #[must_use]
    fn reinterpret_into<H>(self) -> Vec<H>
    where
        H: crate::private::SealedHalf;
}

mod private {
    use crate::{bf16, f16};
    #[cfg(feature = "alloc")]
    use alloc::vec::Vec;

    pub trait SealedHalfFloatVec {}
    impl SealedHalfFloatVec for Vec<f16> {}
    impl SealedHalfFloatVec for Vec<bf16> {}

    pub trait SealedHalfBitsVec {}
    impl SealedHalfBitsVec for Vec<u16> {}
}

impl HalfFloatVecExt for Vec<f16> {
    #[inline]
    fn reinterpret_into(mut self) -> Vec<u16> {
        // An f16 array has same length and capacity as u16 array
        let length = self.len();
        let capacity = self.capacity();

        // Actually reinterpret the contents of the Vec<f16> as u16,
        // knowing that structs are represented as only their members in memory,
        // which is the u16 part of `f16(u16)`
        let pointer = self.as_mut_ptr() as *mut u16;

        // Prevent running a destructor on the old Vec<u16>, so the pointer won't be deleted
        mem::forget(self);

        // Finally construct a new Vec<f16> from the raw pointer
        // SAFETY: We are reconstructing full length and capacity of original vector,
        // using its original pointer, and the size of elements are identical.
        unsafe { Vec::from_raw_parts(pointer, length, capacity) }
    }

    #[allow(clippy::uninit_vec)]
    fn from_f32_slice(slice: &[f32]) -> Self {
        let mut vec = Vec::with_capacity(slice.len());
        // SAFETY: convert will initialize every value in the vector without reading them,
        // so this is safe to do instead of double initialize from resize, and we're setting it to
        // same value as capacity.
        unsafe { vec.set_len(slice.len()) };
        vec.convert_from_f32_slice(slice);
        vec
    }

    #[allow(clippy::uninit_vec)]
    fn from_f64_slice(slice: &[f64]) -> Self {
        let mut vec = Vec::with_capacity(slice.len());
        // SAFETY: convert will initialize every value in the vector without reading them,
        // so this is safe to do instead of double initialize from resize, and we're setting it to
        // same value as capacity.
        unsafe { vec.set_len(slice.len()) };
        vec.convert_from_f64_slice(slice);
        vec
    }
}

impl HalfFloatVecExt for Vec<bf16> {
    #[inline]
    fn reinterpret_into(mut self) -> Vec<u16> {
        // An f16 array has same length and capacity as u16 array
        let length = self.len();
        let capacity = self.capacity();

        // Actually reinterpret the contents of the Vec<f16> as u16,
        // knowing that structs are represented as only their members in memory,
        // which is the u16 part of `f16(u16)`
        let pointer = self.as_mut_ptr() as *mut u16;

        // Prevent running a destructor on the old Vec<u16>, so the pointer won't be deleted
        mem::forget(self);

        // Finally construct a new Vec<f16> from the raw pointer
        // SAFETY: We are reconstructing full length and capacity of original vector,
        // using its original pointer, and the size of elements are identical.
        unsafe { Vec::from_raw_parts(pointer, length, capacity) }
    }

    #[allow(clippy::uninit_vec)]
    fn from_f32_slice(slice: &[f32]) -> Self {
        let mut vec = Vec::with_capacity(slice.len());
        // SAFETY: convert will initialize every value in the vector without reading them,
        // so this is safe to do instead of double initialize from resize, and we're setting it to
        // same value as capacity.
        unsafe { vec.set_len(slice.len()) };
        vec.convert_from_f32_slice(slice);
        vec
    }

    #[allow(clippy::uninit_vec)]
    fn from_f64_slice(slice: &[f64]) -> Self {
        let mut vec = Vec::with_capacity(slice.len());
        // SAFETY: convert will initialize every value in the vector without reading them,
        // so this is safe to do instead of double initialize from resize, and we're setting it to
        // same value as capacity.
        unsafe { vec.set_len(slice.len()) };
        vec.convert_from_f64_slice(slice);
        vec
    }
}

impl HalfBitsVecExt for Vec<u16> {
    // This is safe because all traits are sealed
    #[inline]
    fn reinterpret_into<H>(mut self) -> Vec<H>
    where
        H: crate::private::SealedHalf,
    {
        // An f16 array has same length and capacity as u16 array
        let length = self.len();
        let capacity = self.capacity();

        // Actually reinterpret the contents of the Vec<u16> as f16,
        // knowing that structs are represented as only their members in memory,
        // which is the u16 part of `f16(u16)`
        let pointer = self.as_mut_ptr() as *mut H;

        // Prevent running a destructor on the old Vec<u16>, so the pointer won't be deleted
        mem::forget(self);

        // Finally construct a new Vec<f16> from the raw pointer
        // SAFETY: We are reconstructing full length and capacity of original vector,
        // using its original pointer, and the size of elements are identical.
        unsafe { Vec::from_raw_parts(pointer, length, capacity) }
    }
}

#[cfg(test)]
mod test {
    use super::{HalfBitsVecExt, HalfFloatVecExt};
    use crate::{bf16, f16};
    #[cfg(all(feature = "alloc", not(feature = "std")))]
    use alloc::vec;

    #[test]
    fn test_vec_conversions_f16() {
        let numbers = vec![f16::E, f16::PI, f16::EPSILON, f16::FRAC_1_SQRT_2];
        let bits = vec![
            f16::E.to_bits(),
            f16::PI.to_bits(),
            f16::EPSILON.to_bits(),
            f16::FRAC_1_SQRT_2.to_bits(),
        ];
        let bits_cloned = bits.clone();

        // Convert from bits to numbers
        let from_bits = bits.reinterpret_into::<f16>();
        assert_eq!(&from_bits[..], &numbers[..]);

        // Convert from numbers back to bits
        let to_bits = from_bits.reinterpret_into();
        assert_eq!(&to_bits[..], &bits_cloned[..]);
    }

    #[test]
    fn test_vec_conversions_bf16() {
        let numbers = vec![bf16::E, bf16::PI, bf16::EPSILON, bf16::FRAC_1_SQRT_2];
        let bits = vec![
            bf16::E.to_bits(),
            bf16::PI.to_bits(),
            bf16::EPSILON.to_bits(),
            bf16::FRAC_1_SQRT_2.to_bits(),
        ];
        let bits_cloned = bits.clone();

        // Convert from bits to numbers
        let from_bits = bits.reinterpret_into::<bf16>();
        assert_eq!(&from_bits[..], &numbers[..]);

        // Convert from numbers back to bits
        let to_bits = from_bits.reinterpret_into();
        assert_eq!(&to_bits[..], &bits_cloned[..]);
    }
}