1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::mem::{forget, size_of};
use alloc::slice;
use alloc::vec;
use alloc::vec::Vec;
use crate::imp_prelude::*;
use crate::{dimension, ArcArray1, ArcArray2};
/// Create an **[`Array`]** with one, two or
/// three dimensions.
///
/// ```
/// use ndarray::array;
/// let a1 = array![1, 2, 3, 4];
///
/// let a2 = array![[1, 2],
/// [3, 4]];
///
/// let a3 = array![[[1, 2], [3, 4]],
/// [[5, 6], [7, 8]]];
///
/// assert_eq!(a1.shape(), &[4]);
/// assert_eq!(a2.shape(), &[2, 2]);
/// assert_eq!(a3.shape(), &[2, 2, 2]);
/// ```
///
/// This macro uses `vec![]`, and has the same ownership semantics;
/// elements are moved into the resulting `Array`.
///
/// Use `array![...].into_shared()` to create an `ArcArray`.
#[macro_export]
macro_rules! array {
($([$([$($x:expr),* $(,)*]),+ $(,)*]),+ $(,)*) => {{
$crate::Array3::from(vec![$([$([$($x,)*],)*],)*])
}};
($([$($x:expr),* $(,)*]),+ $(,)*) => {{
$crate::Array2::from(vec![$([$($x,)*],)*])
}};
($($x:expr),* $(,)*) => {{
$crate::Array::from(vec![$($x,)*])
}};
}
/// Create a zero-dimensional array with the element `x`.
pub fn arr0<A>(x: A) -> Array0<A> {
unsafe { ArrayBase::from_shape_vec_unchecked((), vec![x]) }
}
/// Create a one-dimensional array with elements from `xs`.
pub fn arr1<A: Clone>(xs: &[A]) -> Array1<A> {
ArrayBase::from(xs.to_vec())
}
/// Create a one-dimensional array with elements from `xs`.
pub fn rcarr1<A: Clone>(xs: &[A]) -> ArcArray1<A> {
arr1(xs).into_shared()
}
/// Create a zero-dimensional array view borrowing `x`.
pub fn aview0<A>(x: &A) -> ArrayView0<'_, A> {
unsafe { ArrayView::from_shape_ptr(Ix0(), x) }
}
/// Create a one-dimensional array view with elements borrowing `xs`.
///
/// ```
/// use ndarray::aview1;
///
/// let data = [1.0; 1024];
///
/// // Create a 2D array view from borrowed data
/// let a2d = aview1(&data).into_shape((32, 32)).unwrap();
///
/// assert_eq!(a2d.sum(), 1024.0);
/// ```
pub fn aview1<A>(xs: &[A]) -> ArrayView1<'_, A> {
ArrayView::from(xs)
}
/// Create a two-dimensional array view with elements borrowing `xs`.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`. (This
/// can only occur when `V` is zero-sized.)
pub fn aview2<A, V: FixedInitializer<Elem = A>>(xs: &[V]) -> ArrayView2<'_, A> {
let cols = V::len();
let rows = xs.len();
let dim = Ix2(rows, cols);
if size_of::<V>() == 0 {
dimension::size_of_shape_checked(&dim)
.expect("Product of non-zero axis lengths must not overflow isize.");
}
// `rows` is guaranteed to fit in `isize` because we've checked the ZST
// case and slices never contain > `isize::MAX` bytes. `cols` is guaranteed
// to fit in `isize` because `FixedInitializer` is not implemented for any
// array lengths > `isize::MAX`. `cols * rows` is guaranteed to fit in
// `isize` because we've checked the ZST case and slices never contain >
// `isize::MAX` bytes.
unsafe {
let data = slice::from_raw_parts(xs.as_ptr() as *const A, cols * rows);
ArrayView::from_shape_ptr(dim, data.as_ptr())
}
}
/// Create a one-dimensional read-write array view with elements borrowing `xs`.
///
/// ```
/// use ndarray::{aview_mut1, s};
/// // Create an array view over some data, then slice it and modify it.
/// let mut data = [0; 1024];
/// {
/// let mut a = aview_mut1(&mut data).into_shape((32, 32)).unwrap();
/// a.slice_mut(s![.., ..;3]).fill(5);
/// }
/// assert_eq!(&data[..10], [5, 0, 0, 5, 0, 0, 5, 0, 0, 5]);
/// ```
pub fn aview_mut1<A>(xs: &mut [A]) -> ArrayViewMut1<'_, A> {
ArrayViewMut::from(xs)
}
/// Create a two-dimensional read-write array view with elements borrowing `xs`.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`. (This
/// can only occur when `V` is zero-sized.)
///
/// # Example
///
/// ```
/// use ndarray::aview_mut2;
///
/// // The inner (nested) array must be of length 1 to 16, but the outer
/// // can be of any length.
/// let mut data = [[0.; 2]; 128];
/// {
/// // Make a 128 x 2 mut array view then turn it into 2 x 128
/// let mut a = aview_mut2(&mut data).reversed_axes();
/// // Make the first row ones and second row minus ones.
/// a.row_mut(0).fill(1.);
/// a.row_mut(1).fill(-1.);
/// }
/// // look at the start of the result
/// assert_eq!(&data[..3], [[1., -1.], [1., -1.], [1., -1.]]);
/// ```
pub fn aview_mut2<A, V: FixedInitializer<Elem = A>>(xs: &mut [V]) -> ArrayViewMut2<'_, A> {
let cols = V::len();
let rows = xs.len();
let dim = Ix2(rows, cols);
if size_of::<V>() == 0 {
dimension::size_of_shape_checked(&dim)
.expect("Product of non-zero axis lengths must not overflow isize.");
}
// `rows` is guaranteed to fit in `isize` because we've checked the ZST
// case and slices never contain > `isize::MAX` bytes. `cols` is guaranteed
// to fit in `isize` because `FixedInitializer` is not implemented for any
// array lengths > `isize::MAX`. `cols * rows` is guaranteed to fit in
// `isize` because we've checked the ZST case and slices never contain >
// `isize::MAX` bytes.
unsafe {
let data = slice::from_raw_parts_mut(xs.as_mut_ptr() as *mut A, cols * rows);
ArrayViewMut::from_shape_ptr(dim, data.as_mut_ptr())
}
}
/// Fixed-size array used for array initialization
#[allow(clippy::missing_safety_doc)] // Should not be implemented downstream and to be deprecated.
pub unsafe trait FixedInitializer {
type Elem;
fn as_init_slice(&self) -> &[Self::Elem];
fn len() -> usize;
}
macro_rules! impl_arr_init {
(__impl $n: expr) => (
unsafe impl<T> FixedInitializer for [T; $n] {
type Elem = T;
fn as_init_slice(&self) -> &[T] { self }
fn len() -> usize { $n }
}
);
() => ();
($n: expr, $($m:expr,)*) => (
impl_arr_init!(__impl $n);
impl_arr_init!($($m,)*);
)
}
// For implementors: If you ever implement `FixedInitializer` for array lengths
// > `isize::MAX` (e.g. once Rust adds const generics), you must update
// `aview2` and `aview_mut2` to perform the necessary checks. In particular,
// the assumption that `cols` can never exceed `isize::MAX` would be incorrect.
// (Consider e.g. `let xs: &[[i32; ::std::usize::MAX]] = &[]`.)
impl_arr_init!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,);
/// Create a two-dimensional array with elements from `xs`.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1, 2, 3],
/// [4, 5, 6]]);
/// assert!(
/// a.shape() == [2, 3]
/// );
/// ```
pub fn arr2<A: Clone, V: FixedInitializer<Elem = A>>(xs: &[V]) -> Array2<A>
where
V: Clone,
{
Array2::from(xs.to_vec())
}
impl<A, V> From<Vec<V>> for Array2<A>
where
V: FixedInitializer<Elem = A>,
{
/// Converts the `Vec` of arrays to an owned 2-D array.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`.
fn from(mut xs: Vec<V>) -> Self {
let dim = Ix2(xs.len(), V::len());
let ptr = xs.as_mut_ptr();
let cap = xs.capacity();
let expand_len = dimension::size_of_shape_checked(&dim)
.expect("Product of non-zero axis lengths must not overflow isize.");
forget(xs);
unsafe {
let v = if size_of::<A>() == 0 {
Vec::from_raw_parts(ptr as *mut A, expand_len, expand_len)
} else if V::len() == 0 {
Vec::new()
} else {
// Guaranteed not to overflow in this case since A is non-ZST
// and Vec never allocates more than isize bytes.
let expand_cap = cap * V::len();
Vec::from_raw_parts(ptr as *mut A, expand_len, expand_cap)
};
ArrayBase::from_shape_vec_unchecked(dim, v)
}
}
}
impl<A, V, U> From<Vec<V>> for Array3<A>
where
V: FixedInitializer<Elem = U>,
U: FixedInitializer<Elem = A>,
{
/// Converts the `Vec` of arrays to an owned 3-D array.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`.
fn from(mut xs: Vec<V>) -> Self {
let dim = Ix3(xs.len(), V::len(), U::len());
let ptr = xs.as_mut_ptr();
let cap = xs.capacity();
let expand_len = dimension::size_of_shape_checked(&dim)
.expect("Product of non-zero axis lengths must not overflow isize.");
forget(xs);
unsafe {
let v = if size_of::<A>() == 0 {
Vec::from_raw_parts(ptr as *mut A, expand_len, expand_len)
} else if V::len() == 0 || U::len() == 0 {
Vec::new()
} else {
// Guaranteed not to overflow in this case since A is non-ZST
// and Vec never allocates more than isize bytes.
let expand_cap = cap * V::len() * U::len();
Vec::from_raw_parts(ptr as *mut A, expand_len, expand_cap)
};
ArrayBase::from_shape_vec_unchecked(dim, v)
}
}
}
/// Create a two-dimensional array with elements from `xs`.
///
pub fn rcarr2<A: Clone, V: Clone + FixedInitializer<Elem = A>>(xs: &[V]) -> ArcArray2<A> {
arr2(xs).into_shared()
}
/// Create a three-dimensional array with elements from `xs`.
///
/// **Panics** if the slices are not all of the same length.
///
/// ```
/// use ndarray::arr3;
///
/// let a = arr3(&[[[1, 2],
/// [3, 4]],
/// [[5, 6],
/// [7, 8]],
/// [[9, 0],
/// [1, 2]]]);
/// assert!(
/// a.shape() == [3, 2, 2]
/// );
/// ```
pub fn arr3<A: Clone, V: FixedInitializer<Elem = U>, U: FixedInitializer<Elem = A>>(
xs: &[V],
) -> Array3<A>
where
V: Clone,
U: Clone,
{
Array3::from(xs.to_vec())
}
/// Create a three-dimensional array with elements from `xs`.
pub fn rcarr3<A: Clone, V: FixedInitializer<Elem = U>, U: FixedInitializer<Elem = A>>(
xs: &[V],
) -> ArcArray<A, Ix3>
where
V: Clone,
U: Clone,
{
arr3(xs).into_shared()
}