1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
use alloc::vec::Vec;
use std::mem;
use std::mem::MaybeUninit;
use rawpointer::PointerExt;
use crate::imp_prelude::*;
use crate::dimension;
use crate::error::{ErrorKind, ShapeError};
use crate::iterators::Baseiter;
use crate::low_level_util::AbortIfPanic;
use crate::OwnedRepr;
use crate::Zip;
/// Methods specific to `Array0`.
///
/// ***See also all methods for [`ArrayBase`]***
impl<A> Array<A, Ix0> {
/// Returns the single element in the array without cloning it.
///
/// ```
/// use ndarray::{arr0, Array0};
///
/// // `Foo` doesn't implement `Clone`.
/// #[derive(Debug, Eq, PartialEq)]
/// struct Foo;
///
/// let array: Array0<Foo> = arr0(Foo);
/// let scalar: Foo = array.into_scalar();
/// assert_eq!(scalar, Foo);
/// ```
pub fn into_scalar(self) -> A {
let size = mem::size_of::<A>();
if size == 0 {
// Any index in the `Vec` is fine since all elements are identical.
self.data.into_vec().remove(0)
} else {
// Find the index in the `Vec` corresponding to `self.ptr`.
// (This is necessary because the element in the array might not be
// the first element in the `Vec`, such as if the array was created
// by `array![1, 2, 3, 4].slice_move(s![2])`.)
let first = self.ptr.as_ptr() as usize;
let base = self.data.as_ptr() as usize;
let index = (first - base) / size;
debug_assert_eq!((first - base) % size, 0);
// Remove the element at the index and return it.
self.data.into_vec().remove(index)
}
}
}
/// Methods specific to `Array`.
///
/// ***See also all methods for [`ArrayBase`]***
impl<A, D> Array<A, D>
where
D: Dimension,
{
/// Return a vector of the elements in the array, in the way they are
/// stored internally.
///
/// If the array is in standard memory layout, the logical element order
/// of the array (`.iter()` order) and of the returned vector will be the same.
pub fn into_raw_vec(self) -> Vec<A> {
self.data.into_vec()
}
}
/// Methods specific to `Array2`.
///
/// ***See also all methods for [`ArrayBase`]***
impl<A> Array<A, Ix2> {
/// Append a row to an array
///
/// The elements from `row` are cloned and added as a new row in the array.
///
/// ***Errors*** with a shape error if the length of the row does not match the length of the
/// rows in the array.
///
/// The memory layout of the `self` array matters for ensuring that the append is efficient.
/// Appending automatically changes memory layout of the array so that it is appended to
/// along the "growing axis". However, if the memory layout needs adjusting, the array must
/// reallocate and move memory.
///
/// The operation leaves the existing data in place and is most efficent if one of these is
/// true:
///
/// - The axis being appended to is the longest stride axis, i.e the array is in row major
/// ("C") layout.
/// - The array has 0 or 1 rows (It is converted to row major)
///
/// Ensure appending is efficient by, for example, appending to an empty array and then always
/// pushing/appending along the same axis. For pushing rows, ndarray's default layout (C order)
/// is efficient.
///
/// When repeatedly appending to a single axis, the amortized average complexity of each
/// append is O(m), where *m* is the length of the row.
///
/// ```rust
/// use ndarray::{Array, ArrayView, array};
///
/// // create an empty array and append
/// let mut a = Array::zeros((0, 4));
/// a.push_row(ArrayView::from(&[ 1., 2., 3., 4.])).unwrap();
/// a.push_row(ArrayView::from(&[-1., -2., -3., -4.])).unwrap();
///
/// assert_eq!(
/// a,
/// array![[ 1., 2., 3., 4.],
/// [-1., -2., -3., -4.]]);
/// ```
pub fn push_row(&mut self, row: ArrayView<A, Ix1>) -> Result<(), ShapeError>
where
A: Clone,
{
self.append(Axis(0), row.insert_axis(Axis(0)))
}
/// Append a column to an array
///
/// The elements from `column` are cloned and added as a new column in the array.
///
/// ***Errors*** with a shape error if the length of the column does not match the length of
/// the columns in the array.
///
/// The memory layout of the `self` array matters for ensuring that the append is efficient.
/// Appending automatically changes memory layout of the array so that it is appended to
/// along the "growing axis". However, if the memory layout needs adjusting, the array must
/// reallocate and move memory.
///
/// The operation leaves the existing data in place and is most efficent if one of these is
/// true:
///
/// - The axis being appended to is the longest stride axis, i.e the array is in column major
/// ("F") layout.
/// - The array has 0 or 1 columns (It is converted to column major)
///
/// Ensure appending is efficient by, for example, appending to an empty array and then always
/// pushing/appending along the same axis. For pushing columns, column major layout (F order)
/// is efficient.
///
/// When repeatedly appending to a single axis, the amortized average complexity of each append
/// is O(m), where *m* is the length of the column.
///
/// ```rust
/// use ndarray::{Array, ArrayView, array};
///
/// // create an empty array and append
/// let mut a = Array::zeros((2, 0));
/// a.push_column(ArrayView::from(&[1., 2.])).unwrap();
/// a.push_column(ArrayView::from(&[-1., -2.])).unwrap();
///
/// assert_eq!(
/// a,
/// array![[1., -1.],
/// [2., -2.]]);
/// ```
pub fn push_column(&mut self, column: ArrayView<A, Ix1>) -> Result<(), ShapeError>
where
A: Clone,
{
self.append(Axis(1), column.insert_axis(Axis(1)))
}
}
impl<A, D> Array<A, D>
where D: Dimension
{
/// Move all elements from self into `new_array`, which must be of the same shape but
/// can have a different memory layout. The destination is overwritten completely.
///
/// The destination should be a mut reference to an array or an `ArrayViewMut` with
/// `A` elements.
///
/// ***Panics*** if the shapes don't agree.
///
/// ## Example
///
/// ```
/// use ndarray::Array;
///
/// // Usage example of move_into in safe code
/// let mut a = Array::default((10, 10));
/// let b = Array::from_shape_fn((10, 10), |(i, j)| (i + j).to_string());
/// b.move_into(&mut a);
/// ```
pub fn move_into<'a, AM>(self, new_array: AM)
where
AM: Into<ArrayViewMut<'a, A, D>>,
A: 'a,
{
// Remove generic parameter P and call the implementation
let new_array = new_array.into();
if mem::needs_drop::<A>() {
self.move_into_needs_drop(new_array);
} else {
// If `A` doesn't need drop, we can overwrite the destination.
// Safe because: move_into_uninit only writes initialized values
unsafe {
self.move_into_uninit(new_array.into_maybe_uninit())
}
}
}
fn move_into_needs_drop(mut self, new_array: ArrayViewMut<A, D>) {
// Simple case where `A` has a destructor: just swap values between self and new_array.
// Afterwards, `self` drops full of initialized values and dropping works as usual.
// This avoids moving out of owned values in `self` while at the same time managing
// the dropping if the values being overwritten in `new_array`.
Zip::from(&mut self).and(new_array)
.for_each(|src, dst| mem::swap(src, dst));
}
/// Move all elements from self into `new_array`, which must be of the same shape but
/// can have a different memory layout. The destination is overwritten completely.
///
/// The destination should be a mut reference to an array or an `ArrayViewMut` with
/// `MaybeUninit<A>` elements (which are overwritten without dropping any existing value).
///
/// Minor implementation note: Owned arrays like `self` may be sliced in place and own elements
/// that are not part of their active view; these are dropped at the end of this function,
/// after all elements in the "active view" are moved into `new_array`. If there is a panic in
/// drop of any such element, other elements may be leaked.
///
/// ***Panics*** if the shapes don't agree.
///
/// ## Example
///
/// ```
/// use ndarray::Array;
///
/// let a = Array::from_iter(0..100).into_shape((10, 10)).unwrap();
/// let mut b = Array::uninit((10, 10));
/// a.move_into_uninit(&mut b);
/// unsafe {
/// // we can now promise we have fully initialized `b`.
/// let b = b.assume_init();
/// }
/// ```
pub fn move_into_uninit<'a, AM>(self, new_array: AM)
where
AM: Into<ArrayViewMut<'a, MaybeUninit<A>, D>>,
A: 'a,
{
// Remove generic parameter AM and call the implementation
self.move_into_impl(new_array.into())
}
fn move_into_impl(mut self, new_array: ArrayViewMut<MaybeUninit<A>, D>) {
unsafe {
// Safety: copy_to_nonoverlapping cannot panic
let guard = AbortIfPanic(&"move_into: moving out of owned value");
// Move all reachable elements; we move elements out of `self`.
// and thus must not panic for the whole section until we call `self.data.set_len(0)`.
Zip::from(self.raw_view_mut())
.and(new_array)
.for_each(|src, dst| {
src.copy_to_nonoverlapping(dst.as_mut_ptr(), 1);
});
guard.defuse();
// Drop all unreachable elements
self.drop_unreachable_elements();
}
}
/// This drops all "unreachable" elements in the data storage of self.
///
/// That means those elements that are not visible in the slicing of the array.
/// *Reachable elements are assumed to already have been moved from.*
///
/// # Safety
///
/// This is a panic critical section since `self` is already moved-from.
fn drop_unreachable_elements(mut self) -> OwnedRepr<A> {
let self_len = self.len();
// "deconstruct" self; the owned repr releases ownership of all elements and we
// and carry on with raw view methods
let data_len = self.data.len();
let has_unreachable_elements = self_len != data_len;
if !has_unreachable_elements || mem::size_of::<A>() == 0 || !mem::needs_drop::<A>() {
unsafe {
self.data.set_len(0);
}
self.data
} else {
self.drop_unreachable_elements_slow()
}
}
#[inline(never)]
#[cold]
fn drop_unreachable_elements_slow(mut self) -> OwnedRepr<A> {
// "deconstruct" self; the owned repr releases ownership of all elements and we
// carry on with raw view methods
let data_len = self.data.len();
let data_ptr = self.data.as_nonnull_mut().as_ptr();
unsafe {
// Safety: self.data releases ownership of the elements. Any panics below this point
// will result in leaking elements instead of double drops.
let self_ = self.raw_view_mut();
self.data.set_len(0);
drop_unreachable_raw(self_, data_ptr, data_len);
}
self.data
}
/// Create an empty array with an all-zeros shape
///
/// ***Panics*** if D is zero-dimensional, because it can't be empty
pub(crate) fn empty() -> Array<A, D> {
assert_ne!(D::NDIM, Some(0));
let ndim = D::NDIM.unwrap_or(1);
Array::from_shape_simple_fn(D::zeros(ndim), || unreachable!())
}
/// Create new_array with the right layout for appending to `growing_axis`
#[cold]
fn change_to_contig_append_layout(&mut self, growing_axis: Axis) {
let ndim = self.ndim();
let mut dim = self.raw_dim();
// The array will be created with 0 (C) or ndim-1 (F) as the biggest stride
// axis. Rearrange the shape so that `growing_axis` is the biggest stride axis
// afterwards.
let mut new_array;
if growing_axis == Axis(ndim - 1) {
new_array = Self::uninit(dim.f());
} else {
dim.slice_mut()[..=growing_axis.index()].rotate_right(1);
new_array = Self::uninit(dim);
new_array.dim.slice_mut()[..=growing_axis.index()].rotate_left(1);
new_array.strides.slice_mut()[..=growing_axis.index()].rotate_left(1);
}
// self -> old_self.
// dummy array -> self.
// old_self elements are moved -> new_array.
let old_self = std::mem::replace(self, Self::empty());
old_self.move_into_uninit(new_array.view_mut());
// new_array -> self.
unsafe {
*self = new_array.assume_init();
}
}
/// Append an array to the array along an axis.
///
/// The elements of `array` are cloned and extend the axis `axis` in the present array;
/// `self` will grow in size by 1 along `axis`.
///
/// Append to the array, where the array being pushed to the array has one dimension less than
/// the `self` array. This method is equivalent to [append](ArrayBase::append) in this way:
/// `self.append(axis, array.insert_axis(axis))`.
///
/// ***Errors*** with a shape error if the shape of self does not match the array-to-append;
/// all axes *except* the axis along which it being appended matter for this check:
/// the shape of `self` with `axis` removed must be the same as the shape of `array`.
///
/// The memory layout of the `self` array matters for ensuring that the append is efficient.
/// Appending automatically changes memory layout of the array so that it is appended to
/// along the "growing axis". However, if the memory layout needs adjusting, the array must
/// reallocate and move memory.
///
/// The operation leaves the existing data in place and is most efficent if `axis` is a
/// "growing axis" for the array, i.e. one of these is true:
///
/// - The axis is the longest stride axis, for example the 0th axis in a C-layout or the
/// *n-1*th axis in an F-layout array.
/// - The axis has length 0 or 1 (It is converted to the new growing axis)
///
/// Ensure appending is efficient by for example starting from an empty array and/or always
/// appending to an array along the same axis.
///
/// The amortized average complexity of the append, when appending along its growing axis, is
/// O(*m*) where *m* is the number of individual elements to append.
///
/// The memory layout of the argument `array` does not matter to the same extent.
///
/// ```rust
/// use ndarray::{Array, ArrayView, array, Axis};
///
/// // create an empty array and push rows to it
/// let mut a = Array::zeros((0, 4));
/// let ones = ArrayView::from(&[1.; 4]);
/// let zeros = ArrayView::from(&[0.; 4]);
/// a.push(Axis(0), ones).unwrap();
/// a.push(Axis(0), zeros).unwrap();
/// a.push(Axis(0), ones).unwrap();
///
/// assert_eq!(
/// a,
/// array![[1., 1., 1., 1.],
/// [0., 0., 0., 0.],
/// [1., 1., 1., 1.]]);
/// ```
pub fn push(&mut self, axis: Axis, array: ArrayView<A, D::Smaller>)
-> Result<(), ShapeError>
where
A: Clone,
D: RemoveAxis,
{
// same-dimensionality conversion
self.append(axis, array.insert_axis(axis).into_dimensionality::<D>().unwrap())
}
/// Append an array to the array along an axis.
///
/// The elements of `array` are cloned and extend the axis `axis` in the present array;
/// `self` will grow in size by `array.len_of(axis)` along `axis`.
///
/// ***Errors*** with a shape error if the shape of self does not match the array-to-append;
/// all axes *except* the axis along which it being appended matter for this check:
/// the shape of `self` with `axis` removed must be the same as the shape of `array` with
/// `axis` removed.
///
/// The memory layout of the `self` array matters for ensuring that the append is efficient.
/// Appending automatically changes memory layout of the array so that it is appended to
/// along the "growing axis". However, if the memory layout needs adjusting, the array must
/// reallocate and move memory.
///
/// The operation leaves the existing data in place and is most efficent if `axis` is a
/// "growing axis" for the array, i.e. one of these is true:
///
/// - The axis is the longest stride axis, for example the 0th axis in a C-layout or the
/// *n-1*th axis in an F-layout array.
/// - The axis has length 0 or 1 (It is converted to the new growing axis)
///
/// Ensure appending is efficient by for example starting from an empty array and/or always
/// appending to an array along the same axis.
///
/// The amortized average complexity of the append, when appending along its growing axis, is
/// O(*m*) where *m* is the number of individual elements to append.
///
/// The memory layout of the argument `array` does not matter to the same extent.
///
/// ```rust
/// use ndarray::{Array, ArrayView, array, Axis};
///
/// // create an empty array and append two rows at a time
/// let mut a = Array::zeros((0, 4));
/// let ones = ArrayView::from(&[1.; 8]).into_shape((2, 4)).unwrap();
/// let zeros = ArrayView::from(&[0.; 8]).into_shape((2, 4)).unwrap();
/// a.append(Axis(0), ones).unwrap();
/// a.append(Axis(0), zeros).unwrap();
/// a.append(Axis(0), ones).unwrap();
///
/// assert_eq!(
/// a,
/// array![[1., 1., 1., 1.],
/// [1., 1., 1., 1.],
/// [0., 0., 0., 0.],
/// [0., 0., 0., 0.],
/// [1., 1., 1., 1.],
/// [1., 1., 1., 1.]]);
/// ```
pub fn append(&mut self, axis: Axis, mut array: ArrayView<A, D>)
-> Result<(), ShapeError>
where
A: Clone,
D: RemoveAxis,
{
if self.ndim() == 0 {
return Err(ShapeError::from_kind(ErrorKind::IncompatibleShape));
}
let current_axis_len = self.len_of(axis);
let self_dim = self.raw_dim();
let array_dim = array.raw_dim();
let remaining_shape = self_dim.remove_axis(axis);
let array_rem_shape = array_dim.remove_axis(axis);
if remaining_shape != array_rem_shape {
return Err(ShapeError::from_kind(ErrorKind::IncompatibleShape));
}
let len_to_append = array.len();
let mut res_dim = self_dim;
res_dim[axis.index()] += array_dim[axis.index()];
let new_len = dimension::size_of_shape_checked(&res_dim)?;
if len_to_append == 0 {
// There are no elements to append and shapes are compatible:
// either the dimension increment is zero, or there is an existing
// zero in another axis in self.
debug_assert_eq!(self.len(), new_len);
self.dim = res_dim;
return Ok(());
}
let self_is_empty = self.is_empty();
let mut incompatible_layout = false;
// array must be empty or have `axis` as the outermost (longest stride) axis
if !self_is_empty && current_axis_len > 1 {
// `axis` must be max stride axis or equal to its stride
let axis_stride = self.stride_of(axis);
if axis_stride < 0 {
incompatible_layout = true;
} else {
for ax in self.axes() {
if ax.axis == axis {
continue;
}
if ax.len > 1 && ax.stride.abs() > axis_stride {
incompatible_layout = true;
break;
}
}
}
}
// array must be be "full" (contiguous and have no exterior holes)
if self.len() != self.data.len() {
incompatible_layout = true;
}
if incompatible_layout {
self.change_to_contig_append_layout(axis);
// safety-check parameters after remodeling
debug_assert_eq!(self_is_empty, self.is_empty());
debug_assert_eq!(current_axis_len, self.len_of(axis));
}
let strides = if self_is_empty {
// recompute strides - if the array was previously empty, it could have zeros in
// strides.
// The new order is based on c/f-contig but must have `axis` as outermost axis.
if axis == Axis(self.ndim() - 1) {
// prefer f-contig when appending to the last axis
// Axis n - 1 is outermost axis
res_dim.fortran_strides()
} else {
// standard axis order except for the growing axis;
// anticipates that it's likely that `array` has standard order apart from the
// growing axis.
res_dim.slice_mut()[..=axis.index()].rotate_right(1);
let mut strides = res_dim.default_strides();
res_dim.slice_mut()[..=axis.index()].rotate_left(1);
strides.slice_mut()[..=axis.index()].rotate_left(1);
strides
}
} else if current_axis_len == 1 {
// This is the outermost/longest stride axis; so we find the max across the other axes
let new_stride = self.axes().fold(1, |acc, ax| {
if ax.axis == axis || ax.len <= 1 {
acc
} else {
let this_ax = ax.len as isize * ax.stride.abs();
if this_ax > acc { this_ax } else { acc }
}
});
let mut strides = self.strides.clone();
strides[axis.index()] = new_stride as usize;
strides
} else {
self.strides.clone()
};
unsafe {
// grow backing storage and update head ptr
let data_to_array_offset = if std::mem::size_of::<A>() != 0 {
self.as_ptr().offset_from(self.data.as_ptr())
} else {
0
};
debug_assert!(data_to_array_offset >= 0);
self.ptr = self.data.reserve(len_to_append).offset(data_to_array_offset);
// clone elements from view to the array now
//
// To be robust for panics and drop the right elements, we want
// to fill the tail in memory order, so that we can drop the right elements on panic.
//
// We have: Zip::from(tail_view).and(array)
// Transform tail_view into standard order by inverting and moving its axes.
// Keep the Zip traversal unchanged by applying the same axis transformations to
// `array`. This ensures the Zip traverses the underlying memory in order.
//
// XXX It would be possible to skip this transformation if the element
// doesn't have drop. However, in the interest of code coverage, all elements
// use this code initially.
// Invert axes in tail_view by inverting strides
let mut tail_strides = strides.clone();
if tail_strides.ndim() > 1 {
for i in 0..tail_strides.ndim() {
let s = tail_strides[i] as isize;
if s < 0 {
tail_strides.set_axis(Axis(i), -s as usize);
array.invert_axis(Axis(i));
}
}
}
// With > 0 strides, the current end of data is the correct base pointer for tail_view
let tail_ptr = self.data.as_end_nonnull();
let mut tail_view = RawArrayViewMut::new(tail_ptr, array_dim, tail_strides);
if tail_view.ndim() > 1 {
sort_axes_in_default_order_tandem(&mut tail_view, &mut array);
debug_assert!(tail_view.is_standard_layout(),
"not std layout dim: {:?}, strides: {:?}",
tail_view.shape(), tail_view.strides());
}
// Keep track of currently filled length of `self.data` and update it
// on scope exit (panic or loop finish). This "indirect" way to
// write the length is used to help the compiler, the len store to self.data may
// otherwise be mistaken to alias with other stores in the loop.
struct SetLenOnDrop<'a, A: 'a> {
len: usize,
data: &'a mut OwnedRepr<A>,
}
impl<A> Drop for SetLenOnDrop<'_, A> {
fn drop(&mut self) {
unsafe {
self.data.set_len(self.len);
}
}
}
let mut data_length_guard = SetLenOnDrop {
len: self.data.len(),
data: &mut self.data,
};
// Safety: tail_view is constructed to have the same shape as array
Zip::from(tail_view)
.and_unchecked(array)
.debug_assert_c_order()
.for_each(|to, from| {
to.write(from.clone());
data_length_guard.len += 1;
});
drop(data_length_guard);
// update array dimension
self.strides = strides;
self.dim = res_dim;
}
// multiple assertions after pointer & dimension update
debug_assert_eq!(self.data.len(), self.len());
debug_assert_eq!(self.len(), new_len);
debug_assert!(self.pointer_is_inbounds());
Ok(())
}
}
/// This drops all "unreachable" elements in `self_` given the data pointer and data length.
///
/// # Safety
///
/// This is an internal function for use by move_into and IntoIter only, safety invariants may need
/// to be upheld across the calls from those implementations.
pub(crate) unsafe fn drop_unreachable_raw<A, D>(mut self_: RawArrayViewMut<A, D>, data_ptr: *mut A, data_len: usize)
where
D: Dimension,
{
let self_len = self_.len();
for i in 0..self_.ndim() {
if self_.stride_of(Axis(i)) < 0 {
self_.invert_axis(Axis(i));
}
}
sort_axes_in_default_order(&mut self_);
// with uninverted axes this is now the element with lowest address
let array_memory_head_ptr = self_.ptr.as_ptr();
let data_end_ptr = data_ptr.add(data_len);
debug_assert!(data_ptr <= array_memory_head_ptr);
debug_assert!(array_memory_head_ptr <= data_end_ptr);
// The idea is simply this: the iterator will yield the elements of self_ in
// increasing address order.
//
// The pointers produced by the iterator are those that we *do not* touch.
// The pointers *not mentioned* by the iterator are those we have to drop.
//
// We have to drop elements in the range from `data_ptr` until (not including)
// `data_end_ptr`, except those that are produced by `iter`.
// As an optimization, the innermost axis is removed if it has stride 1, because
// we then have a long stretch of contiguous elements we can skip as one.
let inner_lane_len;
if self_.ndim() > 1 && self_.strides.last_elem() == 1 {
self_.dim.slice_mut().rotate_right(1);
self_.strides.slice_mut().rotate_right(1);
inner_lane_len = self_.dim[0];
self_.dim[0] = 1;
self_.strides[0] = 1;
} else {
inner_lane_len = 1;
}
// iter is a raw pointer iterator traversing the array in memory order now with the
// sorted axes.
let mut iter = Baseiter::new(self_.ptr.as_ptr(), self_.dim, self_.strides);
let mut dropped_elements = 0;
let mut last_ptr = data_ptr;
while let Some(elem_ptr) = iter.next() {
// The interval from last_ptr up until (not including) elem_ptr
// should now be dropped. This interval may be empty, then we just skip this loop.
while last_ptr != elem_ptr {
debug_assert!(last_ptr < data_end_ptr);
std::ptr::drop_in_place(last_ptr);
last_ptr = last_ptr.add(1);
dropped_elements += 1;
}
// Next interval will continue one past the current lane
last_ptr = elem_ptr.add(inner_lane_len);
}
while last_ptr < data_end_ptr {
std::ptr::drop_in_place(last_ptr);
last_ptr = last_ptr.add(1);
dropped_elements += 1;
}
assert_eq!(data_len, dropped_elements + self_len,
"Internal error: inconsistency in move_into");
}
/// Sort axes to standard order, i.e Axis(0) has biggest stride and Axis(n - 1) least stride
///
/// The axes should have stride >= 0 before calling this method.
fn sort_axes_in_default_order<S, D>(a: &mut ArrayBase<S, D>)
where
S: RawData,
D: Dimension,
{
if a.ndim() <= 1 {
return;
}
sort_axes1_impl(&mut a.dim, &mut a.strides);
}
fn sort_axes1_impl<D>(adim: &mut D, astrides: &mut D)
where
D: Dimension,
{
debug_assert!(adim.ndim() > 1);
debug_assert_eq!(adim.ndim(), astrides.ndim());
// bubble sort axes
let mut changed = true;
while changed {
changed = false;
for i in 0..adim.ndim() - 1 {
let axis_i = i;
let next_axis = i + 1;
// make sure higher stride axes sort before.
debug_assert!(astrides.slice()[axis_i] as isize >= 0);
if (astrides.slice()[axis_i] as isize) < astrides.slice()[next_axis] as isize {
changed = true;
adim.slice_mut().swap(axis_i, next_axis);
astrides.slice_mut().swap(axis_i, next_axis);
}
}
}
}
/// Sort axes to standard order, i.e Axis(0) has biggest stride and Axis(n - 1) least stride
///
/// Axes in a and b are sorted by the strides of `a`, and `a`'s axes should have stride >= 0 before
/// calling this method.
fn sort_axes_in_default_order_tandem<S, S2, D>(a: &mut ArrayBase<S, D>, b: &mut ArrayBase<S2, D>)
where
S: RawData,
S2: RawData,
D: Dimension,
{
if a.ndim() <= 1 {
return;
}
sort_axes2_impl(&mut a.dim, &mut a.strides, &mut b.dim, &mut b.strides);
}
fn sort_axes2_impl<D>(adim: &mut D, astrides: &mut D, bdim: &mut D, bstrides: &mut D)
where
D: Dimension,
{
debug_assert!(adim.ndim() > 1);
debug_assert_eq!(adim.ndim(), bdim.ndim());
// bubble sort axes
let mut changed = true;
while changed {
changed = false;
for i in 0..adim.ndim() - 1 {
let axis_i = i;
let next_axis = i + 1;
// make sure higher stride axes sort before.
debug_assert!(astrides.slice()[axis_i] as isize >= 0);
if (astrides.slice()[axis_i] as isize) < astrides.slice()[next_axis] as isize {
changed = true;
adim.slice_mut().swap(axis_i, next_axis);
astrides.slice_mut().swap(axis_i, next_axis);
bdim.slice_mut().swap(axis_i, next_axis);
bstrides.slice_mut().swap(axis_i, next_axis);
}
}
}
}