1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
use num_complex::Complex;
use std::mem;
use std::ptr::NonNull;

use crate::dimension::{self, stride_offset};
use crate::extension::nonnull::nonnull_debug_checked_from_ptr;
use crate::imp_prelude::*;
use crate::is_aligned;
use crate::shape_builder::{Strides, StrideShape};

impl<A, D> RawArrayView<A, D>
where
    D: Dimension,
{
    /// Create a new `RawArrayView`.
    ///
    /// Unsafe because caller is responsible for ensuring that the array will
    /// meet all of the invariants of the `ArrayBase` type.
    #[inline]
    pub(crate) unsafe fn new(ptr: NonNull<A>, dim: D, strides: D) -> Self {
        RawArrayView::from_data_ptr(RawViewRepr::new(), ptr)
            .with_strides_dim(strides, dim)
    }

    unsafe fn new_(ptr: *const A, dim: D, strides: D) -> Self {
        Self::new(nonnull_debug_checked_from_ptr(ptr as *mut A), dim, strides)
    }

    /// Create an `RawArrayView<A, D>` from shape information and a raw pointer
    /// to the elements.
    ///
    /// # Safety
    ///
    /// The caller is responsible for ensuring all of the following:
    ///
    /// * `ptr` must be non-null, and it must be safe to [`.offset()`] `ptr` by
    ///   zero.
    ///
    /// * It must be safe to [`.offset()`] the pointer repeatedly along all
    ///   axes and calculate the `count`s for the `.offset()` calls without
    ///   overflow, even if the array is empty or the elements are zero-sized.
    ///
    ///   In other words,
    ///
    ///   * All possible pointers generated by moving along all axes must be in
    ///     bounds or one byte past the end of a single allocation with element
    ///     type `A`. The only exceptions are if the array is empty or the element
    ///     type is zero-sized. In these cases, `ptr` may be dangling, but it must
    ///     still be safe to [`.offset()`] the pointer along the axes.
    ///
    ///   * The offset in units of bytes between the least address and greatest
    ///     address by moving along all axes must not exceed `isize::MAX`. This
    ///     constraint prevents the computed offset, in bytes, from overflowing
    ///     `isize` regardless of the starting point due to past offsets.
    ///
    ///   * The offset in units of `A` between the least address and greatest
    ///     address by moving along all axes must not exceed `isize::MAX`. This
    ///     constraint prevents overflow when calculating the `count` parameter to
    ///     [`.offset()`] regardless of the starting point due to past offsets.
    ///
    /// * The product of non-zero axis lengths must not exceed `isize::MAX`.
    /// 
    /// * Strides must be non-negative.
    ///
    /// This function can use debug assertions to check some of these requirements,
    /// but it's not a complete check.
    ///
    /// [`.offset()`]: https://doc.rust-lang.org/stable/std/primitive.pointer.html#method.offset
    pub unsafe fn from_shape_ptr<Sh>(shape: Sh, ptr: *const A) -> Self
    where
        Sh: Into<StrideShape<D>>,
    {
        let shape = shape.into();
        let dim = shape.dim;
        if cfg!(debug_assertions) {
            assert!(!ptr.is_null(), "The pointer must be non-null.");
            if let Strides::Custom(strides) = &shape.strides {
                dimension::strides_non_negative(strides).unwrap();
                dimension::max_abs_offset_check_overflow::<A, _>(&dim, strides).unwrap();
            } else {
                dimension::size_of_shape_checked(&dim).unwrap();
            }
        }
        let strides = shape.strides.strides_for_dim(&dim);
        RawArrayView::new_(ptr, dim, strides)
    }

    /// Converts to a read-only view of the array.
    ///
    /// # Safety
    ///
    /// From a safety standpoint, this is equivalent to dereferencing a raw
    /// pointer for every element in the array. You must ensure that all of the
    /// data is valid, ensure that the pointer is aligned, and choose the
    /// correct lifetime.
    #[inline]
    pub unsafe fn deref_into_view<'a>(self) -> ArrayView<'a, A, D> {
        debug_assert!(
            is_aligned(self.ptr.as_ptr()),
            "The pointer must be aligned."
        );
        ArrayView::new(self.ptr, self.dim, self.strides)
    }

    /// Split the array view along `axis` and return one array pointer strictly
    /// before the split and one array pointer after the split.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    pub fn split_at(self, axis: Axis, index: Ix) -> (Self, Self) {
        assert!(index <= self.len_of(axis));
        let left_ptr = self.ptr.as_ptr();
        let right_ptr = if index == self.len_of(axis) {
            self.ptr.as_ptr()
        } else {
            let offset = stride_offset(index, self.strides.axis(axis));
            // The `.offset()` is safe due to the guarantees of `RawData`.
            unsafe { self.ptr.as_ptr().offset(offset) }
        };

        let mut dim_left = self.dim.clone();
        dim_left.set_axis(axis, index);
        let left = unsafe { Self::new_(left_ptr, dim_left, self.strides.clone()) };

        let mut dim_right = self.dim;
        let right_len = dim_right.axis(axis) - index;
        dim_right.set_axis(axis, right_len);
        let right = unsafe { Self::new_(right_ptr, dim_right, self.strides) };

        (left, right)
    }

    /// Cast the raw pointer of the raw array view to a different type
    ///
    /// **Panics** if element size is not compatible.
    ///
    /// Lack of panic does not imply it is a valid cast. The cast works the same
    /// way as regular raw pointer casts.
    ///
    /// While this method is safe, for the same reason as regular raw pointer
    /// casts are safe, access through the produced raw view is only possible
    /// in an unsafe block or function.
    pub fn cast<B>(self) -> RawArrayView<B, D> {
        assert_eq!(
            mem::size_of::<B>(),
            mem::size_of::<A>(),
            "size mismatch in raw view cast"
        );
        let ptr = self.ptr.cast::<B>();
        unsafe { RawArrayView::new(ptr, self.dim, self.strides) }
    }
}

impl<T, D> RawArrayView<Complex<T>, D>
where
    D: Dimension,
{
    /// Splits the view into views of the real and imaginary components of the
    /// elements.
    pub fn split_complex(self) -> Complex<RawArrayView<T, D>> {
        // Check that the size and alignment of `Complex<T>` are as expected.
        // These assertions should always pass, for arbitrary `T`.
        assert_eq!(
            mem::size_of::<Complex<T>>(),
            mem::size_of::<T>().checked_mul(2).unwrap()
        );
        assert_eq!(mem::align_of::<Complex<T>>(), mem::align_of::<T>());

        let dim = self.dim.clone();

        // Double the strides. In the zero-sized element case and for axes of
        // length <= 1, we leave the strides as-is to avoid possible overflow.
        let mut strides = self.strides.clone();
        if mem::size_of::<T>() != 0 {
            for ax in 0..strides.ndim() {
                if dim[ax] > 1 {
                    strides[ax] = (strides[ax] as isize * 2) as usize;
                }
            }
        }

        let ptr_re: *mut T = self.ptr.as_ptr().cast();
        let ptr_im: *mut T = if self.is_empty() {
            // In the empty case, we can just reuse the existing pointer since
            // it won't be dereferenced anyway. It is not safe to offset by
            // one, since the allocation may be empty.
            ptr_re
        } else {
            // In the nonempty case, we can safely offset into the first
            // (complex) element.
            unsafe { ptr_re.add(1) }
        };

        // `Complex` is `repr(C)` with only fields `re: T` and `im: T`. So, the
        // real components of the elements start at the same pointer, and the
        // imaginary components start at the pointer offset by one, with
        // exactly double the strides. The new, doubled strides still meet the
        // overflow constraints:
        //
        // - For the zero-sized element case, the strides are unchanged in
        //   units of bytes and in units of the element type.
        //
        // - For the nonzero-sized element case:
        //
        //   - In units of bytes, the strides are unchanged. The only exception
        //     is axes of length <= 1, but those strides are irrelevant anyway.
        //
        //   - Since `Complex<T>` for nonzero `T` is always at least 2 bytes,
        //     and the original strides did not overflow in units of bytes, we
        //     know that the new, doubled strides will not overflow in units of
        //     `T`.
        unsafe {
            Complex {
                re: RawArrayView::new_(ptr_re, dim.clone(), strides.clone()),
                im: RawArrayView::new_(ptr_im, dim, strides),
            }
        }
    }
}

impl<A, D> RawArrayViewMut<A, D>
where
    D: Dimension,
{
    /// Create a new `RawArrayViewMut`.
    ///
    /// Unsafe because caller is responsible for ensuring that the array will
    /// meet all of the invariants of the `ArrayBase` type.
    #[inline]
    pub(crate) unsafe fn new(ptr: NonNull<A>, dim: D, strides: D) -> Self {
        RawArrayViewMut::from_data_ptr(RawViewRepr::new(), ptr)
            .with_strides_dim(strides, dim)
    }

    unsafe fn new_(ptr: *mut A, dim: D, strides: D) -> Self {
        Self::new(nonnull_debug_checked_from_ptr(ptr), dim, strides)
    }

    /// Create an `RawArrayViewMut<A, D>` from shape information and a raw
    /// pointer to the elements.
    ///
    /// # Safety
    ///
    /// The caller is responsible for ensuring all of the following:
    ///
    /// * `ptr` must be non-null, and it must be safe to [`.offset()`] `ptr` by
    ///   zero.
    ///
    /// * It must be safe to [`.offset()`] the pointer repeatedly along all
    ///   axes and calculate the `count`s for the `.offset()` calls without
    ///   overflow, even if the array is empty or the elements are zero-sized.
    ///
    ///   In other words,
    ///
    ///   * All possible pointers generated by moving along all axes must be in
    ///     bounds or one byte past the end of a single allocation with element
    ///     type `A`. The only exceptions are if the array is empty or the element
    ///     type is zero-sized. In these cases, `ptr` may be dangling, but it must
    ///     still be safe to [`.offset()`] the pointer along the axes.
    ///
    ///   * The offset in units of bytes between the least address and greatest
    ///     address by moving along all axes must not exceed `isize::MAX`. This
    ///     constraint prevents the computed offset, in bytes, from overflowing
    ///     `isize` regardless of the starting point due to past offsets.
    ///
    ///   * The offset in units of `A` between the least address and greatest
    ///     address by moving along all axes must not exceed `isize::MAX`. This
    ///     constraint prevents overflow when calculating the `count` parameter to
    ///     [`.offset()`] regardless of the starting point due to past offsets.
    ///
    /// * The product of non-zero axis lengths must not exceed `isize::MAX`.
    /// 
    /// * Strides must be non-negative.
    ///
    /// This function can use debug assertions to check some of these requirements,
    /// but it's not a complete check.
    ///
    /// [`.offset()`]: https://doc.rust-lang.org/stable/std/primitive.pointer.html#method.offset
    pub unsafe fn from_shape_ptr<Sh>(shape: Sh, ptr: *mut A) -> Self
    where
        Sh: Into<StrideShape<D>>,
    {
        let shape = shape.into();
        let dim = shape.dim;
        if cfg!(debug_assertions) {
            assert!(!ptr.is_null(), "The pointer must be non-null.");
            if let Strides::Custom(strides) = &shape.strides {
                dimension::strides_non_negative(strides).unwrap();
                dimension::max_abs_offset_check_overflow::<A, _>(&dim, strides).unwrap();
            } else {
                dimension::size_of_shape_checked(&dim).unwrap();
            }
        }
        let strides = shape.strides.strides_for_dim(&dim);
        RawArrayViewMut::new_(ptr, dim, strides)
    }

    /// Converts to a non-mutable `RawArrayView`.
    #[inline]
    pub(crate) fn into_raw_view(self) -> RawArrayView<A, D> {
        unsafe { RawArrayView::new(self.ptr, self.dim, self.strides) }
    }

    /// Converts to a read-only view of the array.
    ///
    /// # Safety
    ///
    /// From a safety standpoint, this is equivalent to dereferencing a raw
    /// pointer for every element in the array. You must ensure that all of the
    /// data is valid, ensure that the pointer is aligned, and choose the
    /// correct lifetime.
    #[inline]
    pub unsafe fn deref_into_view<'a>(self) -> ArrayView<'a, A, D> {
        debug_assert!(
            is_aligned(self.ptr.as_ptr()),
            "The pointer must be aligned."
        );
        ArrayView::new(self.ptr, self.dim, self.strides)
    }

    /// Converts to a mutable view of the array.
    ///
    /// # Safety
    ///
    /// From a safety standpoint, this is equivalent to dereferencing a raw
    /// pointer for every element in the array. You must ensure that all of the
    /// data is valid, ensure that the pointer is aligned, and choose the
    /// correct lifetime.
    #[inline]
    pub unsafe fn deref_into_view_mut<'a>(self) -> ArrayViewMut<'a, A, D> {
        debug_assert!(
            is_aligned(self.ptr.as_ptr()),
            "The pointer must be aligned."
        );
        ArrayViewMut::new(self.ptr, self.dim, self.strides)
    }

    /// Split the array view along `axis` and return one array pointer strictly
    /// before the split and one array pointer after the split.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    pub fn split_at(self, axis: Axis, index: Ix) -> (Self, Self) {
        let (left, right) = self.into_raw_view().split_at(axis, index);
        unsafe {
            (
                Self::new(left.ptr, left.dim, left.strides),
                Self::new(right.ptr, right.dim, right.strides),
            )
        }
    }

    /// Cast the raw pointer of the raw array view to a different type
    ///
    /// **Panics** if element size is not compatible.
    ///
    /// Lack of panic does not imply it is a valid cast. The cast works the same
    /// way as regular raw pointer casts.
    ///
    /// While this method is safe, for the same reason as regular raw pointer
    /// casts are safe, access through the produced raw view is only possible
    /// in an unsafe block or function.
    pub fn cast<B>(self) -> RawArrayViewMut<B, D> {
        assert_eq!(
            mem::size_of::<B>(),
            mem::size_of::<A>(),
            "size mismatch in raw view cast"
        );
        let ptr = self.ptr.cast::<B>();
        unsafe { RawArrayViewMut::new(ptr, self.dim, self.strides) }
    }
}

impl<T, D> RawArrayViewMut<Complex<T>, D>
where
    D: Dimension,
{
    /// Splits the view into views of the real and imaginary components of the
    /// elements.
    pub fn split_complex(self) -> Complex<RawArrayViewMut<T, D>> {
        let Complex { re, im } = self.into_raw_view().split_complex();
        unsafe {
            Complex {
                re: RawArrayViewMut::new(re.ptr, re.dim, re.strides),
                im: RawArrayViewMut::new(im.ptr, im.dim, im.strides),
            }
        }
    }
}