1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use crate::imp_prelude::*;
use crate::slice::MultiSliceArg;
use num_complex::Complex;

/// Methods for read-only array views.
impl<'a, A, D> ArrayView<'a, A, D>
where
    D: Dimension,
{
    /// Split the array view along `axis` and return one view strictly before the
    /// split and one view after the split.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    ///
    /// **Examples:**
    /// ```rust
    /// # use ndarray::prelude::*;
    /// let a = aview2(&[[0, 1, 2, 3],
    ///                  [4, 5, 6, 7],
    ///                  [8, 9, 0, 1]]);
    ///
    /// ```
    /// The array view `a` has two axes and shape 3 × 4:
    /// ```text
    ///          ──▶ Axis(1)
    ///         ┌─────┬─────┬─────┬─────┐ 0
    ///       │ │ a₀₀ │ a₀₁ │ a₀₂ │ a₀₃ │
    ///       ▼ ├─────┼─────┼─────┼─────┤ 1
    ///  Axis(0)│ a₁₀ │ a₁₁ │ a₁₂ │ a₁₃ │
    ///         ├─────┼─────┼─────┼─────┤ 2
    ///         │ a₂₀ │ a₂₁ │ a₂₂ │ a₂₃ │
    ///         └─────┴─────┴─────┴─────┘ 3 ↑
    ///         0     1     2     3     4 ← possible split_at indices.
    /// ```
    ///
    /// Row indices increase along `Axis(0)`, and column indices increase along
    /// `Axis(1)`. Note that we split “before” an element index, and that
    /// both 0 and the endpoint are valid split indices.
    ///
    /// **Example 1**: Split `a` along the first axis, in this case the rows, at
    /// index 2.<br>
    /// This produces views v1 and v2 of shapes 2 × 4 and 1 × 4:
    ///
    /// ```rust
    /// # use ndarray::prelude::*;
    /// # let a = aview2(&[[0; 4]; 3]);
    /// let (v1, v2) = a.split_at(Axis(0), 2);
    /// ```
    /// ```text
    ///         ┌─────┬─────┬─────┬─────┐       0  ↓ indices
    ///         │ a₀₀ │ a₀₁ │ a₀₂ │ a₀₃ │            along Axis(0)
    ///         ├─────┼─────┼─────┼─────┤ v1    1
    ///         │ a₁₀ │ a₁₁ │ a₁₂ │ a₁₃ │
    ///         └─────┴─────┴─────┴─────┘
    ///         ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄       2
    ///         ┌─────┬─────┬─────┬─────┐
    ///         │ a₂₀ │ a₂₁ │ a₂₂ │ a₂₃ │ v2
    ///         └─────┴─────┴─────┴─────┘       3
    /// ```
    ///
    /// **Example 2**: Split `a` along the second axis, in this case the
    /// columns, at index 2.<br>
    /// This produces views u1 and u2 of shapes 3 × 2 and 3 × 2:
    ///
    /// ```rust
    /// # use ndarray::prelude::*;
    /// # let a = aview2(&[[0; 4]; 3]);
    /// let (u1, u2) = a.split_at(Axis(1), 2);
    ///
    /// ```
    /// ```text
    ///              u1             u2
    ///         ┌─────┬─────┐┊┌─────┬─────┐
    ///         │ a₀₀ │ a₀₁ │┊│ a₀₂ │ a₀₃ │
    ///         ├─────┼─────┤┊├─────┼─────┤
    ///         │ a₁₀ │ a₁₁ │┊│ a₁₂ │ a₁₃ │
    ///         ├─────┼─────┤┊├─────┼─────┤
    ///         │ a₂₀ │ a₂₁ │┊│ a₂₂ │ a₂₃ │
    ///         └─────┴─────┘┊└─────┴─────┘
    ///         0     1      2      3     4  indices →
    ///                                      along Axis(1)
    /// ```
    pub fn split_at(self, axis: Axis, index: Ix) -> (Self, Self) {
        unsafe {
            let (left, right) = self.into_raw_view().split_at(axis, index);
            (left.deref_into_view(), right.deref_into_view())
        }
    }
}

impl<'a, T, D> ArrayView<'a, Complex<T>, D>
where
    D: Dimension,
{
    /// Splits the view into views of the real and imaginary components of the
    /// elements.
    ///
    /// ```
    /// use ndarray::prelude::*;
    /// use num_complex::{Complex, Complex64};
    ///
    /// let arr = array![
    ///     [Complex64::new(1., 2.), Complex64::new(3., 4.)],
    ///     [Complex64::new(5., 6.), Complex64::new(7., 8.)],
    ///     [Complex64::new(9., 10.), Complex64::new(11., 12.)],
    /// ];
    /// let Complex { re, im } = arr.view().split_complex();
    /// assert_eq!(re, array![[1., 3.], [5., 7.], [9., 11.]]);
    /// assert_eq!(im, array![[2., 4.], [6., 8.], [10., 12.]]);
    /// ```
    pub fn split_complex(self) -> Complex<ArrayView<'a, T, D>> {
        unsafe {
            let Complex { re, im } = self.into_raw_view().split_complex();
            Complex {
                re: re.deref_into_view(),
                im: im.deref_into_view(),
            }
        }
    }
}

/// Methods for read-write array views.
impl<'a, A, D> ArrayViewMut<'a, A, D>
where
    D: Dimension,
{
    /// Split the array view along `axis` and return one mutable view strictly
    /// before the split and one mutable view after the split.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    pub fn split_at(self, axis: Axis, index: Ix) -> (Self, Self) {
        unsafe {
            let (left, right) = self.into_raw_view_mut().split_at(axis, index);
            (left.deref_into_view_mut(), right.deref_into_view_mut())
        }
    }

    /// Split the view into multiple disjoint slices.
    ///
    /// This is similar to [`.multi_slice_mut()`], but `.multi_slice_move()`
    /// consumes `self` and produces views with lifetimes matching that of
    /// `self`.
    ///
    /// See [*Slicing*](#slicing) for full documentation. See also
    /// [`MultiSliceArg`], [`s!`], [`SliceArg`](crate::SliceArg), and
    /// [`SliceInfo`](crate::SliceInfo).
    ///
    /// [`.multi_slice_mut()`]: ArrayBase::multi_slice_mut
    ///
    /// **Panics** if any of the following occur:
    ///
    /// * if any of the views would intersect (i.e. if any element would appear in multiple slices)
    /// * if an index is out of bounds or step size is zero
    /// * if `D` is `IxDyn` and `info` does not match the number of array axes
    pub fn multi_slice_move<M>(self, info: M) -> M::Output
    where
        M: MultiSliceArg<'a, A, D>,
    {
        info.multi_slice_move(self)
    }
}

impl<'a, T, D> ArrayViewMut<'a, Complex<T>, D>
where
    D: Dimension,
{
    /// Splits the view into views of the real and imaginary components of the
    /// elements.
    ///
    /// ```
    /// use ndarray::prelude::*;
    /// use num_complex::{Complex, Complex64};
    ///
    /// let mut arr = array![
    ///     [Complex64::new(1., 2.), Complex64::new(3., 4.)],
    ///     [Complex64::new(5., 6.), Complex64::new(7., 8.)],
    ///     [Complex64::new(9., 10.), Complex64::new(11., 12.)],
    /// ];
    ///
    /// let Complex { mut re, mut im } = arr.view_mut().split_complex();
    /// assert_eq!(re, array![[1., 3.], [5., 7.], [9., 11.]]);
    /// assert_eq!(im, array![[2., 4.], [6., 8.], [10., 12.]]);
    ///
    /// re[[0, 1]] = 13.;
    /// im[[2, 0]] = 14.;
    ///
    /// assert_eq!(arr[[0, 1]], Complex64::new(13., 4.));
    /// assert_eq!(arr[[2, 0]], Complex64::new(9., 14.));
    /// ```
    pub fn split_complex(self) -> Complex<ArrayViewMut<'a, T, D>> {
        unsafe {
            let Complex { re, im } = self.into_raw_view_mut().split_complex();
            Complex {
                re: re.deref_into_view_mut(),
                im: im.deref_into_view_mut(),
            }
        }
    }
}