1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
// Copyright 2017 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#[macro_use]
mod zipmacro;
mod ndproducer;

#[cfg(feature = "rayon")]
use std::mem::MaybeUninit;

use crate::imp_prelude::*;
use crate::AssignElem;
use crate::IntoDimension;
use crate::Layout;
use crate::partial::Partial;

use crate::indexes::{indices, Indices};
use crate::split_at::{SplitPreference, SplitAt};
use crate::dimension;

pub use self::ndproducer::{NdProducer, IntoNdProducer, Offset};

/// Return if the expression is a break value.
macro_rules! fold_while {
    ($e:expr) => {
        match $e {
            FoldWhile::Continue(x) => x,
            x => return x,
        }
    };
}

/// Broadcast an array so that it acts like a larger size and/or shape array.
///
/// See [broadcasting](ArrayBase#broadcasting) for more information.
trait Broadcast<E>
where
    E: IntoDimension,
{
    type Output: NdProducer<Dim = E::Dim>;
    /// Broadcast the array to the new dimensions `shape`.
    ///
    /// ***Panics*** if broadcasting isn’t possible.
    fn broadcast_unwrap(self, shape: E) -> Self::Output;
    private_decl! {}
}

/// Compute `Layout` hints for array shape dim, strides
fn array_layout<D: Dimension>(dim: &D, strides: &D) -> Layout {
    let n = dim.ndim();
    if dimension::is_layout_c(dim, strides) {
        // effectively one-dimensional => C and F layout compatible
        if n <= 1 || dim.slice().iter().filter(|&&len| len > 1).count() <= 1 {
            Layout::one_dimensional()
        } else {
            Layout::c()
        }
    } else if n > 1 && dimension::is_layout_f(dim, strides) {
        Layout::f()
    } else if n > 1 {
        if dim[0] > 1 && strides[0] == 1 {
            Layout::fpref()
        } else if dim[n - 1] > 1 && strides[n - 1] == 1 {
            Layout::cpref()
        } else {
            Layout::none()
        }
    } else {
        Layout::none()
    }
}

impl<S, D> ArrayBase<S, D>
where
    S: RawData,
    D: Dimension,
{
    pub(crate) fn layout_impl(&self) -> Layout {
        array_layout(&self.dim, &self.strides)
    }
}

impl<'a, A, D, E> Broadcast<E> for ArrayView<'a, A, D>
where
    E: IntoDimension,
    D: Dimension,
{
    type Output = ArrayView<'a, A, E::Dim>;
    fn broadcast_unwrap(self, shape: E) -> Self::Output {
        let res: ArrayView<'_, A, E::Dim> = (&self).broadcast_unwrap(shape.into_dimension());
        unsafe { ArrayView::new(res.ptr, res.dim, res.strides) }
    }
    private_impl! {}
}

trait ZippableTuple: Sized {
    type Item;
    type Ptr: OffsetTuple<Args = Self::Stride> + Copy;
    type Dim: Dimension;
    type Stride: Copy;
    fn as_ptr(&self) -> Self::Ptr;
    unsafe fn as_ref(&self, ptr: Self::Ptr) -> Self::Item;
    unsafe fn uget_ptr(&self, i: &Self::Dim) -> Self::Ptr;
    fn stride_of(&self, index: usize) -> Self::Stride;
    fn contiguous_stride(&self) -> Self::Stride;
    fn split_at(self, axis: Axis, index: usize) -> (Self, Self);
}

/// Lock step function application across several arrays or other producers.
///
/// Zip allows matching several producers to each other elementwise and applying
/// a function over all tuples of elements (one item from each input at
/// a time).
///
/// In general, the zip uses a tuple of producers
/// ([`NdProducer`] trait) that all have to be of the
/// same shape. The NdProducer implementation defines what its item type is
/// (for example if it's a shared reference, mutable reference or an array
/// view etc).
///
/// If all the input arrays are of the same memory layout the zip performs much
/// better and the compiler can usually vectorize the loop (if applicable).
///
/// The order elements are visited is not specified. The producers don’t have to
/// have the same item type.
///
/// The `Zip` has two methods for function application: `for_each` and
/// `fold_while`. The zip object can be split, which allows parallelization.
/// A read-only zip object (no mutable producers) can be cloned.
///
/// See also the [`azip!()`] which offers a convenient shorthand
/// to common ways to use `Zip`.
///
/// ```
/// use ndarray::Zip;
/// use ndarray::Array2;
///
/// type M = Array2<f64>;
///
/// // Create four 2d arrays of the same size
/// let mut a = M::zeros((64, 32));
/// let b = M::from_elem(a.dim(), 1.);
/// let c = M::from_elem(a.dim(), 2.);
/// let d = M::from_elem(a.dim(), 3.);
///
/// // Example 1: Perform an elementwise arithmetic operation across
/// // the four arrays a, b, c, d.
///
/// Zip::from(&mut a)
///     .and(&b)
///     .and(&c)
///     .and(&d)
///     .for_each(|w, &x, &y, &z| {
///         *w += x + y * z;
///     });
///
/// // Example 2: Create a new array `totals` with one entry per row of `a`.
/// //  Use Zip to traverse the rows of `a` and assign to the corresponding
/// //  entry in `totals` with the sum across each row.
/// //  This is possible because the producer for `totals` and the row producer
/// //  for `a` have the same shape and dimensionality.
/// //  The rows producer yields one array view (`row`) per iteration.
///
/// use ndarray::{Array1, Axis};
///
/// let mut totals = Array1::zeros(a.nrows());
///
/// Zip::from(&mut totals)
///     .and(a.rows())
///     .for_each(|totals, row| *totals = row.sum());
///
/// // Check the result against the built in `.sum_axis()` along axis 1.
/// assert_eq!(totals, a.sum_axis(Axis(1)));
///
///
/// // Example 3: Recreate Example 2 using map_collect to make a new array
///
/// let totals2 = Zip::from(a.rows()).map_collect(|row| row.sum());
///
/// // Check the result against the previous example.
/// assert_eq!(totals, totals2);
/// ```
#[derive(Debug, Clone)]
#[must_use = "zipping producers is lazy and does nothing unless consumed"]
pub struct Zip<Parts, D> {
    parts: Parts,
    dimension: D,
    layout: Layout,
    /// The sum of the layout tendencies of the parts;
    /// positive for c- and negative for f-layout preference.
    layout_tendency: i32,
}


impl<P, D> Zip<(P,), D>
where
    D: Dimension,
    P: NdProducer<Dim = D>,
{
    /// Create a new `Zip` from the input array or other producer `p`.
    ///
    /// The Zip will take the exact dimension of `p` and all inputs
    /// must have the same dimensions (or be broadcast to them).
    pub fn from<IP>(p: IP) -> Self
    where
        IP: IntoNdProducer<Dim = D, Output = P, Item = P::Item>,
    {
        let array = p.into_producer();
        let dim = array.raw_dim();
        let layout = array.layout();
        Zip {
            dimension: dim,
            layout,
            parts: (array,),
            layout_tendency: layout.tendency(),
        }
    }
}
impl<P, D> Zip<(Indices<D>, P), D>
where
    D: Dimension + Copy,
    P: NdProducer<Dim = D>,
{
    /// Create a new `Zip` with an index producer and the producer `p`.
    ///
    /// The Zip will take the exact dimension of `p` and all inputs
    /// must have the same dimensions (or be broadcast to them).
    ///
    /// *Note:* Indexed zip has overhead.
    pub fn indexed<IP>(p: IP) -> Self
    where
        IP: IntoNdProducer<Dim = D, Output = P, Item = P::Item>,
    {
        let array = p.into_producer();
        let dim = array.raw_dim();
        Zip::from(indices(dim)).and(array)
    }
}

#[inline]
fn zip_dimension_check<D, P>(dimension: &D, part: &P)
where
    D: Dimension,
    P: NdProducer<Dim = D>,
{
    ndassert!(
        part.equal_dim(dimension),
        "Zip: Producer dimension mismatch, expected: {:?}, got: {:?}",
        dimension,
        part.raw_dim()
    );
}


impl<Parts, D> Zip<Parts, D>
where
    D: Dimension,
{
    /// Return a the number of element tuples in the Zip
    pub fn size(&self) -> usize {
        self.dimension.size()
    }

    /// Return the length of `axis`
    ///
    /// ***Panics*** if `axis` is out of bounds.
    fn len_of(&self, axis: Axis) -> usize {
        self.dimension[axis.index()]
    }

    fn prefer_f(&self) -> bool {
        !self.layout.is(Layout::CORDER) &&
            (self.layout.is(Layout::FORDER) || self.layout_tendency < 0)
    }

    /// Return an *approximation* to the max stride axis; if
    /// component arrays disagree, there may be no choice better than the
    /// others.
    fn max_stride_axis(&self) -> Axis {
        let i = if self.prefer_f() {
            self
                .dimension
                .slice()
                .iter()
                .rposition(|&len| len > 1)
                .unwrap_or(self.dimension.ndim() - 1)
        } else {
            /* corder or default */
            self
                .dimension
                .slice()
                .iter()
                .position(|&len| len > 1)
                .unwrap_or(0)
        };
        Axis(i)
    }
}

impl<P, D> Zip<P, D>
where
    D: Dimension,
{
    fn for_each_core<F, Acc>(&mut self, acc: Acc, mut function: F) -> FoldWhile<Acc>
    where
        F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
        P: ZippableTuple<Dim = D>,
    {
        if self.dimension.ndim() == 0 {
            function(acc, unsafe { self.parts.as_ref(self.parts.as_ptr()) })
        } else if self.layout.is(Layout::CORDER | Layout::FORDER) {
            self.for_each_core_contiguous(acc, function)
        } else {
            self.for_each_core_strided(acc, function)
        }
    }

    fn for_each_core_contiguous<F, Acc>(&mut self, acc: Acc, mut function: F) -> FoldWhile<Acc>
    where
        F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
        P: ZippableTuple<Dim = D>,
    {
        debug_assert!(self.layout.is(Layout::CORDER | Layout::FORDER));
        let size = self.dimension.size();
        let ptrs = self.parts.as_ptr();
        let inner_strides = self.parts.contiguous_stride();
        unsafe {
            self.inner(acc, ptrs, inner_strides, size, &mut function)
        }
    }

    /// The innermost loop of the Zip for_each methods
    ///
    /// Run the fold while operation on a stretch of elements with constant strides
    ///
    /// `ptr`: base pointer for the first element in this stretch
    /// `strides`: strides for the elements in this stretch
    /// `len`: number of elements
    /// `function`: closure
    unsafe fn inner<F, Acc>(&self, mut acc: Acc, ptr: P::Ptr, strides: P::Stride,
                            len: usize, function: &mut F) -> FoldWhile<Acc>
    where
        F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
        P: ZippableTuple
    {
        let mut i = 0;
        while i < len {
            let p = ptr.stride_offset(strides, i);
            acc = fold_while!(function(acc, self.parts.as_ref(p)));
            i += 1;
        }
        FoldWhile::Continue(acc)
    }


    fn for_each_core_strided<F, Acc>(&mut self, acc: Acc, function: F) -> FoldWhile<Acc>
    where
        F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
        P: ZippableTuple<Dim = D>,
    {
        let n = self.dimension.ndim();
        if n == 0 {
            panic!("Unreachable: ndim == 0 is contiguous")
        }
        if n == 1 || self.layout_tendency >= 0 {
            self.for_each_core_strided_c(acc, function)
        } else {
            self.for_each_core_strided_f(acc, function)
        }
    }

    // Non-contiguous but preference for C - unroll over Axis(ndim - 1)
    fn for_each_core_strided_c<F, Acc>(&mut self, mut acc: Acc, mut function: F) -> FoldWhile<Acc>
    where
        F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
        P: ZippableTuple<Dim = D>,
    {
        let n = self.dimension.ndim();
        let unroll_axis = n - 1;
        let inner_len = self.dimension[unroll_axis];
        self.dimension[unroll_axis] = 1;
        let mut index_ = self.dimension.first_index();
        let inner_strides = self.parts.stride_of(unroll_axis);
        // Loop unrolled over closest axis
        while let Some(index) = index_ {
            unsafe {
                let ptr = self.parts.uget_ptr(&index);
                acc = fold_while![self.inner(acc, ptr, inner_strides, inner_len, &mut function)];
            }

            index_ = self.dimension.next_for(index);
        }
        FoldWhile::Continue(acc)
    }

    // Non-contiguous but preference for F - unroll over Axis(0)
    fn for_each_core_strided_f<F, Acc>(&mut self, mut acc: Acc, mut function: F) -> FoldWhile<Acc>
    where
        F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
        P: ZippableTuple<Dim = D>,
    {
        let unroll_axis = 0;
        let inner_len = self.dimension[unroll_axis];
        self.dimension[unroll_axis] = 1;
        let index_ = self.dimension.first_index();
        let inner_strides = self.parts.stride_of(unroll_axis);
        // Loop unrolled over closest axis
        if let Some(mut index) = index_ {
            loop {
                unsafe {
                    let ptr = self.parts.uget_ptr(&index);
                    acc = fold_while![self.inner(acc, ptr, inner_strides, inner_len, &mut function)];
                }

                if !self.dimension.next_for_f(&mut index) {
                    break;
                }
            }
        }
        FoldWhile::Continue(acc)
    }

    #[cfg(feature = "rayon")]
    pub(crate) fn uninitialized_for_current_layout<T>(&self) -> Array<MaybeUninit<T>, D>
    {
        let is_f = self.prefer_f();
        Array::uninit(self.dimension.clone().set_f(is_f))
    }
}

impl<D, P1, P2> Zip<(P1, P2), D>
where
    D: Dimension,
    P1: NdProducer<Dim=D>,
    P1: NdProducer<Dim=D>,
{
    /// Debug assert traversal order is like c (including 1D case)
    // Method placement: only used for binary Zip at the moment.
    #[inline]
    pub(crate) fn debug_assert_c_order(self) -> Self {
        debug_assert!(self.layout.is(Layout::CORDER) || self.layout_tendency >= 0 ||
                      self.dimension.slice().iter().filter(|&&d| d > 1).count() <= 1,
                      "Assertion failed: traversal is not c-order or 1D for \
                      layout {:?}, tendency {}, dimension {:?}",
                      self.layout, self.layout_tendency, self.dimension);
        self
    }
}


/*
trait Offset : Copy {
    unsafe fn offset(self, off: isize) -> Self;
    unsafe fn stride_offset(self, index: usize, stride: isize) -> Self {
        self.offset(index as isize * stride)
    }
}

impl<T> Offset for *mut T {
    unsafe fn offset(self, off: isize) -> Self {
        self.offset(off)
    }
}
*/

trait OffsetTuple {
    type Args;
    unsafe fn stride_offset(self, stride: Self::Args, index: usize) -> Self;
}

impl<T> OffsetTuple for *mut T {
    type Args = isize;
    unsafe fn stride_offset(self, stride: Self::Args, index: usize) -> Self {
        self.offset(index as isize * stride)
    }
}

macro_rules! offset_impl {
    ($([$($param:ident)*][ $($q:ident)*],)+) => {
        $(
        #[allow(non_snake_case)]
        impl<$($param: Offset),*> OffsetTuple for ($($param, )*) {
            type Args = ($($param::Stride,)*);
            unsafe fn stride_offset(self, stride: Self::Args, index: usize) -> Self {
                let ($($param, )*) = self;
                let ($($q, )*) = stride;
                ($(Offset::stride_offset($param, $q, index),)*)
            }
        }
        )+
    }
}

offset_impl! {
    [A ][ a],
    [A B][ a b],
    [A B C][ a b c],
    [A B C D][ a b c d],
    [A B C D E][ a b c d e],
    [A B C D E F][ a b c d e f],
}

macro_rules! zipt_impl {
    ($([$($p:ident)*][ $($q:ident)*],)+) => {
        $(
        #[allow(non_snake_case)]
        impl<Dim: Dimension, $($p: NdProducer<Dim=Dim>),*> ZippableTuple for ($($p, )*) {
            type Item = ($($p::Item, )*);
            type Ptr = ($($p::Ptr, )*);
            type Dim = Dim;
            type Stride = ($($p::Stride,)* );

            fn stride_of(&self, index: usize) -> Self::Stride {
                let ($(ref $p,)*) = *self;
                ($($p.stride_of(Axis(index)), )*)
            }

            fn contiguous_stride(&self) -> Self::Stride {
                let ($(ref $p,)*) = *self;
                ($($p.contiguous_stride(), )*)
            }

            fn as_ptr(&self) -> Self::Ptr {
                let ($(ref $p,)*) = *self;
                ($($p.as_ptr(), )*)
            }
            unsafe fn as_ref(&self, ptr: Self::Ptr) -> Self::Item {
                let ($(ref $q ,)*) = *self;
                let ($($p,)*) = ptr;
                ($($q.as_ref($p),)*)
            }

            unsafe fn uget_ptr(&self, i: &Self::Dim) -> Self::Ptr {
                let ($(ref $p,)*) = *self;
                ($($p.uget_ptr(i), )*)
            }

            fn split_at(self, axis: Axis, index: Ix) -> (Self, Self) {
                let ($($p,)*) = self;
                let ($($p,)*) = (
                    $($p.split_at(axis, index), )*
                );
                (
                    ($($p.0,)*),
                    ($($p.1,)*)
                )
            }
        }
        )+
    }
}

zipt_impl! {
    [A ][ a],
    [A B][ a b],
    [A B C][ a b c],
    [A B C D][ a b c d],
    [A B C D E][ a b c d e],
    [A B C D E F][ a b c d e f],
}

macro_rules! map_impl {
    ($([$notlast:ident $($p:ident)*],)+) => {
        $(
        #[allow(non_snake_case)]
        impl<D, $($p),*> Zip<($($p,)*), D>
            where D: Dimension,
                  $($p: NdProducer<Dim=D> ,)*
        {
            /// Apply a function to all elements of the input arrays,
            /// visiting elements in lock step.
            pub fn for_each<F>(mut self, mut function: F)
                where F: FnMut($($p::Item),*)
            {
                self.for_each_core((), move |(), args| {
                    let ($($p,)*) = args;
                    FoldWhile::Continue(function($($p),*))
                });
            }

            /// Apply a function to all elements of the input arrays,
            /// visiting elements in lock step.
            #[deprecated(note="Renamed to .for_each()", since="0.15.0")]
            pub fn apply<F>(self, function: F)
                where F: FnMut($($p::Item),*)
            {
                self.for_each(function)
            }

            /// Apply a fold function to all elements of the input arrays,
            /// visiting elements in lock step.
            ///
            /// # Example
            ///
            /// The expression `tr(AᵀB)` can be more efficiently computed as
            /// the equivalent expression `∑ᵢⱼ(A∘B)ᵢⱼ` (i.e. the sum of the
            /// elements of the entry-wise product). It would be possible to
            /// evaluate this expression by first computing the entry-wise
            /// product, `A∘B`, and then computing the elementwise sum of that
            /// product, but it's possible to do this in a single loop (and
            /// avoid an extra heap allocation if `A` and `B` can't be
            /// consumed) by using `Zip`:
            ///
            /// ```
            /// use ndarray::{array, Zip};
            ///
            /// let a = array![[1, 5], [3, 7]];
            /// let b = array![[2, 4], [8, 6]];
            ///
            /// // Without using `Zip`. This involves two loops and an extra
            /// // heap allocation for the result of `&a * &b`.
            /// let sum_prod_nonzip = (&a * &b).sum();
            /// // Using `Zip`. This is a single loop without any heap allocations.
            /// let sum_prod_zip = Zip::from(&a).and(&b).fold(0, |acc, a, b| acc + a * b);
            ///
            /// assert_eq!(sum_prod_nonzip, sum_prod_zip);
            /// ```
            pub fn fold<F, Acc>(mut self, acc: Acc, mut function: F) -> Acc
            where
                F: FnMut(Acc, $($p::Item),*) -> Acc,
            {
                self.for_each_core(acc, move |acc, args| {
                    let ($($p,)*) = args;
                    FoldWhile::Continue(function(acc, $($p),*))
                }).into_inner()
            }

            /// Apply a fold function to the input arrays while the return
            /// value is `FoldWhile::Continue`, visiting elements in lock step.
            ///
            pub fn fold_while<F, Acc>(mut self, acc: Acc, mut function: F)
                -> FoldWhile<Acc>
                where F: FnMut(Acc, $($p::Item),*) -> FoldWhile<Acc>
            {
                self.for_each_core(acc, move |acc, args| {
                    let ($($p,)*) = args;
                    function(acc, $($p),*)
                })
            }

            /// Tests if every element of the iterator matches a predicate.
            ///
            /// Returns `true` if `predicate` evaluates to `true` for all elements.
            /// Returns `true` if the input arrays are empty.
            ///
            /// Example:
            ///
            /// ```
            /// use ndarray::{array, Zip};
            /// let a = array![1, 2, 3];
            /// let b = array![1, 4, 9];
            /// assert!(Zip::from(&a).and(&b).all(|&a, &b| a * a == b));
            /// ```
            pub fn all<F>(mut self, mut predicate: F) -> bool
                where F: FnMut($($p::Item),*) -> bool
            {
                !self.for_each_core((), move |_, args| {
                    let ($($p,)*) = args;
                    if predicate($($p),*) {
                        FoldWhile::Continue(())
                    } else {
                        FoldWhile::Done(())
                    }
                }).is_done()
            }

            expand_if!(@bool [$notlast]

            /// Include the producer `p` in the Zip.
            ///
            /// ***Panics*** if `p`’s shape doesn’t match the Zip’s exactly.
            pub fn and<P>(self, p: P) -> Zip<($($p,)* P::Output, ), D>
                where P: IntoNdProducer<Dim=D>,
            {
                let part = p.into_producer();
                zip_dimension_check(&self.dimension, &part);
                self.build_and(part)
            }

            /// Include the producer `p` in the Zip.
            ///
            /// ## Safety
            ///
            /// The caller must ensure that the producer's shape is equal to the Zip's shape.
            /// Uses assertions when debug assertions are enabled.
            #[allow(unused)]
            pub(crate) unsafe fn and_unchecked<P>(self, p: P) -> Zip<($($p,)* P::Output, ), D>
                where P: IntoNdProducer<Dim=D>,
            {
                #[cfg(debug_assertions)]
                {
                    self.and(p)
                }
                #[cfg(not(debug_assertions))]
                {
                    self.build_and(p.into_producer())
                }
            }

            /// Include the producer `p` in the Zip, broadcasting if needed.
            ///
            /// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
            ///
            /// ***Panics*** if broadcasting isn’t possible.
            pub fn and_broadcast<'a, P, D2, Elem>(self, p: P)
                -> Zip<($($p,)* ArrayView<'a, Elem, D>, ), D>
                where P: IntoNdProducer<Dim=D2, Output=ArrayView<'a, Elem, D2>, Item=&'a Elem>,
                      D2: Dimension,
            {
                let part = p.into_producer().broadcast_unwrap(self.dimension.clone());
                self.build_and(part)
            }

            fn build_and<P>(self, part: P) -> Zip<($($p,)* P, ), D>
                where P: NdProducer<Dim=D>,
            {
                let part_layout = part.layout();
                let ($($p,)*) = self.parts;
                Zip {
                    parts: ($($p,)* part, ),
                    layout: self.layout.intersect(part_layout),
                    dimension: self.dimension,
                    layout_tendency: self.layout_tendency + part_layout.tendency(),
                }
            }

            /// Map and collect the results into a new array, which has the same size as the
            /// inputs.
            ///
            /// If all inputs are c- or f-order respectively, that is preserved in the output.
            pub fn map_collect<R>(self, f: impl FnMut($($p::Item,)* ) -> R) -> Array<R, D> {
                self.map_collect_owned(f)
            }

            pub(crate) fn map_collect_owned<S, R>(self, f: impl FnMut($($p::Item,)* ) -> R)
                -> ArrayBase<S, D>
                where S: DataOwned<Elem = R>
            {
                // safe because: all elements are written before the array is completed

                let shape = self.dimension.clone().set_f(self.prefer_f());
                let output = <ArrayBase<S, D>>::build_uninit(shape, |output| {
                    // Use partial to count the number of filled elements, and can drop the right
                    // number of elements on unwinding (if it happens during apply/collect).
                    unsafe {
                        let output_view = output.into_raw_view_mut().cast::<R>();
                        self.and(output_view)
                            .collect_with_partial(f)
                            .release_ownership();
                    }
                });
                unsafe {
                    output.assume_init()
                }
            }

            /// Map and collect the results into a new array, which has the same size as the
            /// inputs.
            ///
            /// If all inputs are c- or f-order respectively, that is preserved in the output.
            #[deprecated(note="Renamed to .map_collect()", since="0.15.0")]
            pub fn apply_collect<R>(self, f: impl FnMut($($p::Item,)* ) -> R) -> Array<R, D> {
                self.map_collect(f)
            }

            /// Map and assign the results into the producer `into`, which should have the same
            /// size as the other inputs.
            ///
            /// The producer should have assignable items as dictated by the `AssignElem` trait,
            /// for example `&mut R`.
            pub fn map_assign_into<R, Q>(self, into: Q, mut f: impl FnMut($($p::Item,)* ) -> R)
                where Q: IntoNdProducer<Dim=D>,
                      Q::Item: AssignElem<R>
            {
                self.and(into)
                    .for_each(move |$($p, )* output_| {
                        output_.assign_elem(f($($p ),*));
                    });
            }

            /// Map and assign the results into the producer `into`, which should have the same
            /// size as the other inputs.
            ///
            /// The producer should have assignable items as dictated by the `AssignElem` trait,
            /// for example `&mut R`.
            #[deprecated(note="Renamed to .map_assign_into()", since="0.15.0")]
            pub fn apply_assign_into<R, Q>(self, into: Q, f: impl FnMut($($p::Item,)* ) -> R)
                where Q: IntoNdProducer<Dim=D>,
                      Q::Item: AssignElem<R>
            {
                self.map_assign_into(into, f)
            }


            );

            /// Split the `Zip` evenly in two.
            ///
            /// It will be split in the way that best preserves element locality.
            pub fn split(self) -> (Self, Self) {
                debug_assert_ne!(self.size(), 0, "Attempt to split empty zip");
                debug_assert_ne!(self.size(), 1, "Attempt to split zip with 1 elem");
                SplitPreference::split(self)
            }
        }

        expand_if!(@bool [$notlast]
            // For collect; Last producer is a RawViewMut
            #[allow(non_snake_case)]
            impl<D, PLast, R, $($p),*> Zip<($($p,)* PLast), D>
                where D: Dimension,
                      $($p: NdProducer<Dim=D> ,)*
                      PLast: NdProducer<Dim = D, Item = *mut R, Ptr = *mut R, Stride = isize>,
            {
                /// The inner workings of map_collect and par_map_collect
                ///
                /// Apply the function and collect the results into the output (last producer)
                /// which should be a raw array view; a Partial that owns the written
                /// elements is returned.
                ///
                /// Elements will be overwritten in place (in the sense of std::ptr::write).
                ///
                /// ## Safety
                ///
                /// The last producer is a RawArrayViewMut and must be safe to write into.
                /// The producer must be c- or f-contig and have the same layout tendency
                /// as the whole Zip.
                ///
                /// The returned Partial's proxy ownership of the elements must be handled,
                /// before the array the raw view points to realizes its ownership.
                pub(crate) unsafe fn collect_with_partial<F>(self, mut f: F) -> Partial<R>
                    where F: FnMut($($p::Item,)* ) -> R
                {
                    // Get the last producer; and make a Partial that aliases its data pointer
                    let (.., ref output) = &self.parts;

                    // debug assert that the output is contiguous in the memory layout we need
                    if cfg!(debug_assertions) {
                        let out_layout = output.layout();
                        assert!(out_layout.is(Layout::CORDER | Layout::FORDER));
                        assert!(
                            (self.layout_tendency <= 0 && out_layout.tendency() <= 0) ||
                            (self.layout_tendency >= 0 && out_layout.tendency() >= 0),
                            "layout tendency violation for self layout {:?}, output layout {:?},\
                            output shape {:?}",
                            self.layout, out_layout, output.raw_dim());
                    }

                    let mut partial = Partial::new(output.as_ptr());

                    // Apply the mapping function on this zip
                    // if we panic with unwinding; Partial will drop the written elements.
                    let partial_len = &mut partial.len;
                    self.for_each(move |$($p,)* output_elem: *mut R| {
                        output_elem.write(f($($p),*));
                        if std::mem::needs_drop::<R>() {
                            *partial_len += 1;
                        }
                    });

                    partial
                }
            }
        );

        impl<D, $($p),*> SplitPreference for Zip<($($p,)*), D>
            where D: Dimension,
                  $($p: NdProducer<Dim=D> ,)*
        {
            fn can_split(&self) -> bool { self.size() > 1 }

            fn split_preference(&self) -> (Axis, usize) {
                // Always split in a way that preserves layout (if any)
                let axis = self.max_stride_axis();
                let index = self.len_of(axis) / 2;
                (axis, index)
            }
        }

        impl<D, $($p),*> SplitAt for Zip<($($p,)*), D>
            where D: Dimension,
                  $($p: NdProducer<Dim=D> ,)*
        {
            fn split_at(self, axis: Axis, index: usize) -> (Self, Self) {
                let (p1, p2) = self.parts.split_at(axis, index);
                let (d1, d2) = self.dimension.split_at(axis, index);
                (Zip {
                    dimension: d1,
                    layout: self.layout,
                    parts: p1,
                    layout_tendency: self.layout_tendency,
                },
                Zip {
                    dimension: d2,
                    layout: self.layout,
                    parts: p2,
                    layout_tendency: self.layout_tendency,
                })
            }

        }

        )+
    }
}

map_impl! {
    [true P1],
    [true P1 P2],
    [true P1 P2 P3],
    [true P1 P2 P3 P4],
    [true P1 P2 P3 P4 P5],
    [false P1 P2 P3 P4 P5 P6],
}

/// Value controlling the execution of `.fold_while` on `Zip`.
#[derive(Debug, Copy, Clone)]
pub enum FoldWhile<T> {
    /// Continue folding with this value
    Continue(T),
    /// Fold is complete and will return this value
    Done(T),
}

impl<T> FoldWhile<T> {
    /// Return the inner value
    pub fn into_inner(self) -> T {
        match self {
            FoldWhile::Continue(x) | FoldWhile::Done(x) => x,
        }
    }

    /// Return true if it is `Done`, false if `Continue`
    pub fn is_done(&self) -> bool {
        match *self {
            FoldWhile::Continue(_) => false,
            FoldWhile::Done(_) => true,
        }
    }
}