1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
// Copyright 2017 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[macro_use]
mod zipmacro;
mod ndproducer;
#[cfg(feature = "rayon")]
use std::mem::MaybeUninit;
use crate::imp_prelude::*;
use crate::AssignElem;
use crate::IntoDimension;
use crate::Layout;
use crate::partial::Partial;
use crate::indexes::{indices, Indices};
use crate::split_at::{SplitPreference, SplitAt};
use crate::dimension;
pub use self::ndproducer::{NdProducer, IntoNdProducer, Offset};
/// Return if the expression is a break value.
macro_rules! fold_while {
($e:expr) => {
match $e {
FoldWhile::Continue(x) => x,
x => return x,
}
};
}
/// Broadcast an array so that it acts like a larger size and/or shape array.
///
/// See [broadcasting](ArrayBase#broadcasting) for more information.
trait Broadcast<E>
where
E: IntoDimension,
{
type Output: NdProducer<Dim = E::Dim>;
/// Broadcast the array to the new dimensions `shape`.
///
/// ***Panics*** if broadcasting isn’t possible.
fn broadcast_unwrap(self, shape: E) -> Self::Output;
private_decl! {}
}
/// Compute `Layout` hints for array shape dim, strides
fn array_layout<D: Dimension>(dim: &D, strides: &D) -> Layout {
let n = dim.ndim();
if dimension::is_layout_c(dim, strides) {
// effectively one-dimensional => C and F layout compatible
if n <= 1 || dim.slice().iter().filter(|&&len| len > 1).count() <= 1 {
Layout::one_dimensional()
} else {
Layout::c()
}
} else if n > 1 && dimension::is_layout_f(dim, strides) {
Layout::f()
} else if n > 1 {
if dim[0] > 1 && strides[0] == 1 {
Layout::fpref()
} else if dim[n - 1] > 1 && strides[n - 1] == 1 {
Layout::cpref()
} else {
Layout::none()
}
} else {
Layout::none()
}
}
impl<S, D> ArrayBase<S, D>
where
S: RawData,
D: Dimension,
{
pub(crate) fn layout_impl(&self) -> Layout {
array_layout(&self.dim, &self.strides)
}
}
impl<'a, A, D, E> Broadcast<E> for ArrayView<'a, A, D>
where
E: IntoDimension,
D: Dimension,
{
type Output = ArrayView<'a, A, E::Dim>;
fn broadcast_unwrap(self, shape: E) -> Self::Output {
let res: ArrayView<'_, A, E::Dim> = (&self).broadcast_unwrap(shape.into_dimension());
unsafe { ArrayView::new(res.ptr, res.dim, res.strides) }
}
private_impl! {}
}
trait ZippableTuple: Sized {
type Item;
type Ptr: OffsetTuple<Args = Self::Stride> + Copy;
type Dim: Dimension;
type Stride: Copy;
fn as_ptr(&self) -> Self::Ptr;
unsafe fn as_ref(&self, ptr: Self::Ptr) -> Self::Item;
unsafe fn uget_ptr(&self, i: &Self::Dim) -> Self::Ptr;
fn stride_of(&self, index: usize) -> Self::Stride;
fn contiguous_stride(&self) -> Self::Stride;
fn split_at(self, axis: Axis, index: usize) -> (Self, Self);
}
/// Lock step function application across several arrays or other producers.
///
/// Zip allows matching several producers to each other elementwise and applying
/// a function over all tuples of elements (one item from each input at
/// a time).
///
/// In general, the zip uses a tuple of producers
/// ([`NdProducer`] trait) that all have to be of the
/// same shape. The NdProducer implementation defines what its item type is
/// (for example if it's a shared reference, mutable reference or an array
/// view etc).
///
/// If all the input arrays are of the same memory layout the zip performs much
/// better and the compiler can usually vectorize the loop (if applicable).
///
/// The order elements are visited is not specified. The producers don’t have to
/// have the same item type.
///
/// The `Zip` has two methods for function application: `for_each` and
/// `fold_while`. The zip object can be split, which allows parallelization.
/// A read-only zip object (no mutable producers) can be cloned.
///
/// See also the [`azip!()`] which offers a convenient shorthand
/// to common ways to use `Zip`.
///
/// ```
/// use ndarray::Zip;
/// use ndarray::Array2;
///
/// type M = Array2<f64>;
///
/// // Create four 2d arrays of the same size
/// let mut a = M::zeros((64, 32));
/// let b = M::from_elem(a.dim(), 1.);
/// let c = M::from_elem(a.dim(), 2.);
/// let d = M::from_elem(a.dim(), 3.);
///
/// // Example 1: Perform an elementwise arithmetic operation across
/// // the four arrays a, b, c, d.
///
/// Zip::from(&mut a)
/// .and(&b)
/// .and(&c)
/// .and(&d)
/// .for_each(|w, &x, &y, &z| {
/// *w += x + y * z;
/// });
///
/// // Example 2: Create a new array `totals` with one entry per row of `a`.
/// // Use Zip to traverse the rows of `a` and assign to the corresponding
/// // entry in `totals` with the sum across each row.
/// // This is possible because the producer for `totals` and the row producer
/// // for `a` have the same shape and dimensionality.
/// // The rows producer yields one array view (`row`) per iteration.
///
/// use ndarray::{Array1, Axis};
///
/// let mut totals = Array1::zeros(a.nrows());
///
/// Zip::from(&mut totals)
/// .and(a.rows())
/// .for_each(|totals, row| *totals = row.sum());
///
/// // Check the result against the built in `.sum_axis()` along axis 1.
/// assert_eq!(totals, a.sum_axis(Axis(1)));
///
///
/// // Example 3: Recreate Example 2 using map_collect to make a new array
///
/// let totals2 = Zip::from(a.rows()).map_collect(|row| row.sum());
///
/// // Check the result against the previous example.
/// assert_eq!(totals, totals2);
/// ```
#[derive(Debug, Clone)]
#[must_use = "zipping producers is lazy and does nothing unless consumed"]
pub struct Zip<Parts, D> {
parts: Parts,
dimension: D,
layout: Layout,
/// The sum of the layout tendencies of the parts;
/// positive for c- and negative for f-layout preference.
layout_tendency: i32,
}
impl<P, D> Zip<(P,), D>
where
D: Dimension,
P: NdProducer<Dim = D>,
{
/// Create a new `Zip` from the input array or other producer `p`.
///
/// The Zip will take the exact dimension of `p` and all inputs
/// must have the same dimensions (or be broadcast to them).
pub fn from<IP>(p: IP) -> Self
where
IP: IntoNdProducer<Dim = D, Output = P, Item = P::Item>,
{
let array = p.into_producer();
let dim = array.raw_dim();
let layout = array.layout();
Zip {
dimension: dim,
layout,
parts: (array,),
layout_tendency: layout.tendency(),
}
}
}
impl<P, D> Zip<(Indices<D>, P), D>
where
D: Dimension + Copy,
P: NdProducer<Dim = D>,
{
/// Create a new `Zip` with an index producer and the producer `p`.
///
/// The Zip will take the exact dimension of `p` and all inputs
/// must have the same dimensions (or be broadcast to them).
///
/// *Note:* Indexed zip has overhead.
pub fn indexed<IP>(p: IP) -> Self
where
IP: IntoNdProducer<Dim = D, Output = P, Item = P::Item>,
{
let array = p.into_producer();
let dim = array.raw_dim();
Zip::from(indices(dim)).and(array)
}
}
#[inline]
fn zip_dimension_check<D, P>(dimension: &D, part: &P)
where
D: Dimension,
P: NdProducer<Dim = D>,
{
ndassert!(
part.equal_dim(dimension),
"Zip: Producer dimension mismatch, expected: {:?}, got: {:?}",
dimension,
part.raw_dim()
);
}
impl<Parts, D> Zip<Parts, D>
where
D: Dimension,
{
/// Return a the number of element tuples in the Zip
pub fn size(&self) -> usize {
self.dimension.size()
}
/// Return the length of `axis`
///
/// ***Panics*** if `axis` is out of bounds.
fn len_of(&self, axis: Axis) -> usize {
self.dimension[axis.index()]
}
fn prefer_f(&self) -> bool {
!self.layout.is(Layout::CORDER) &&
(self.layout.is(Layout::FORDER) || self.layout_tendency < 0)
}
/// Return an *approximation* to the max stride axis; if
/// component arrays disagree, there may be no choice better than the
/// others.
fn max_stride_axis(&self) -> Axis {
let i = if self.prefer_f() {
self
.dimension
.slice()
.iter()
.rposition(|&len| len > 1)
.unwrap_or(self.dimension.ndim() - 1)
} else {
/* corder or default */
self
.dimension
.slice()
.iter()
.position(|&len| len > 1)
.unwrap_or(0)
};
Axis(i)
}
}
impl<P, D> Zip<P, D>
where
D: Dimension,
{
fn for_each_core<F, Acc>(&mut self, acc: Acc, mut function: F) -> FoldWhile<Acc>
where
F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
P: ZippableTuple<Dim = D>,
{
if self.dimension.ndim() == 0 {
function(acc, unsafe { self.parts.as_ref(self.parts.as_ptr()) })
} else if self.layout.is(Layout::CORDER | Layout::FORDER) {
self.for_each_core_contiguous(acc, function)
} else {
self.for_each_core_strided(acc, function)
}
}
fn for_each_core_contiguous<F, Acc>(&mut self, acc: Acc, mut function: F) -> FoldWhile<Acc>
where
F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
P: ZippableTuple<Dim = D>,
{
debug_assert!(self.layout.is(Layout::CORDER | Layout::FORDER));
let size = self.dimension.size();
let ptrs = self.parts.as_ptr();
let inner_strides = self.parts.contiguous_stride();
unsafe {
self.inner(acc, ptrs, inner_strides, size, &mut function)
}
}
/// The innermost loop of the Zip for_each methods
///
/// Run the fold while operation on a stretch of elements with constant strides
///
/// `ptr`: base pointer for the first element in this stretch
/// `strides`: strides for the elements in this stretch
/// `len`: number of elements
/// `function`: closure
unsafe fn inner<F, Acc>(&self, mut acc: Acc, ptr: P::Ptr, strides: P::Stride,
len: usize, function: &mut F) -> FoldWhile<Acc>
where
F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
P: ZippableTuple
{
let mut i = 0;
while i < len {
let p = ptr.stride_offset(strides, i);
acc = fold_while!(function(acc, self.parts.as_ref(p)));
i += 1;
}
FoldWhile::Continue(acc)
}
fn for_each_core_strided<F, Acc>(&mut self, acc: Acc, function: F) -> FoldWhile<Acc>
where
F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
P: ZippableTuple<Dim = D>,
{
let n = self.dimension.ndim();
if n == 0 {
panic!("Unreachable: ndim == 0 is contiguous")
}
if n == 1 || self.layout_tendency >= 0 {
self.for_each_core_strided_c(acc, function)
} else {
self.for_each_core_strided_f(acc, function)
}
}
// Non-contiguous but preference for C - unroll over Axis(ndim - 1)
fn for_each_core_strided_c<F, Acc>(&mut self, mut acc: Acc, mut function: F) -> FoldWhile<Acc>
where
F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
P: ZippableTuple<Dim = D>,
{
let n = self.dimension.ndim();
let unroll_axis = n - 1;
let inner_len = self.dimension[unroll_axis];
self.dimension[unroll_axis] = 1;
let mut index_ = self.dimension.first_index();
let inner_strides = self.parts.stride_of(unroll_axis);
// Loop unrolled over closest axis
while let Some(index) = index_ {
unsafe {
let ptr = self.parts.uget_ptr(&index);
acc = fold_while![self.inner(acc, ptr, inner_strides, inner_len, &mut function)];
}
index_ = self.dimension.next_for(index);
}
FoldWhile::Continue(acc)
}
// Non-contiguous but preference for F - unroll over Axis(0)
fn for_each_core_strided_f<F, Acc>(&mut self, mut acc: Acc, mut function: F) -> FoldWhile<Acc>
where
F: FnMut(Acc, P::Item) -> FoldWhile<Acc>,
P: ZippableTuple<Dim = D>,
{
let unroll_axis = 0;
let inner_len = self.dimension[unroll_axis];
self.dimension[unroll_axis] = 1;
let index_ = self.dimension.first_index();
let inner_strides = self.parts.stride_of(unroll_axis);
// Loop unrolled over closest axis
if let Some(mut index) = index_ {
loop {
unsafe {
let ptr = self.parts.uget_ptr(&index);
acc = fold_while![self.inner(acc, ptr, inner_strides, inner_len, &mut function)];
}
if !self.dimension.next_for_f(&mut index) {
break;
}
}
}
FoldWhile::Continue(acc)
}
#[cfg(feature = "rayon")]
pub(crate) fn uninitialized_for_current_layout<T>(&self) -> Array<MaybeUninit<T>, D>
{
let is_f = self.prefer_f();
Array::uninit(self.dimension.clone().set_f(is_f))
}
}
impl<D, P1, P2> Zip<(P1, P2), D>
where
D: Dimension,
P1: NdProducer<Dim=D>,
P1: NdProducer<Dim=D>,
{
/// Debug assert traversal order is like c (including 1D case)
// Method placement: only used for binary Zip at the moment.
#[inline]
pub(crate) fn debug_assert_c_order(self) -> Self {
debug_assert!(self.layout.is(Layout::CORDER) || self.layout_tendency >= 0 ||
self.dimension.slice().iter().filter(|&&d| d > 1).count() <= 1,
"Assertion failed: traversal is not c-order or 1D for \
layout {:?}, tendency {}, dimension {:?}",
self.layout, self.layout_tendency, self.dimension);
self
}
}
/*
trait Offset : Copy {
unsafe fn offset(self, off: isize) -> Self;
unsafe fn stride_offset(self, index: usize, stride: isize) -> Self {
self.offset(index as isize * stride)
}
}
impl<T> Offset for *mut T {
unsafe fn offset(self, off: isize) -> Self {
self.offset(off)
}
}
*/
trait OffsetTuple {
type Args;
unsafe fn stride_offset(self, stride: Self::Args, index: usize) -> Self;
}
impl<T> OffsetTuple for *mut T {
type Args = isize;
unsafe fn stride_offset(self, stride: Self::Args, index: usize) -> Self {
self.offset(index as isize * stride)
}
}
macro_rules! offset_impl {
($([$($param:ident)*][ $($q:ident)*],)+) => {
$(
#[allow(non_snake_case)]
impl<$($param: Offset),*> OffsetTuple for ($($param, )*) {
type Args = ($($param::Stride,)*);
unsafe fn stride_offset(self, stride: Self::Args, index: usize) -> Self {
let ($($param, )*) = self;
let ($($q, )*) = stride;
($(Offset::stride_offset($param, $q, index),)*)
}
}
)+
}
}
offset_impl! {
[A ][ a],
[A B][ a b],
[A B C][ a b c],
[A B C D][ a b c d],
[A B C D E][ a b c d e],
[A B C D E F][ a b c d e f],
}
macro_rules! zipt_impl {
($([$($p:ident)*][ $($q:ident)*],)+) => {
$(
#[allow(non_snake_case)]
impl<Dim: Dimension, $($p: NdProducer<Dim=Dim>),*> ZippableTuple for ($($p, )*) {
type Item = ($($p::Item, )*);
type Ptr = ($($p::Ptr, )*);
type Dim = Dim;
type Stride = ($($p::Stride,)* );
fn stride_of(&self, index: usize) -> Self::Stride {
let ($(ref $p,)*) = *self;
($($p.stride_of(Axis(index)), )*)
}
fn contiguous_stride(&self) -> Self::Stride {
let ($(ref $p,)*) = *self;
($($p.contiguous_stride(), )*)
}
fn as_ptr(&self) -> Self::Ptr {
let ($(ref $p,)*) = *self;
($($p.as_ptr(), )*)
}
unsafe fn as_ref(&self, ptr: Self::Ptr) -> Self::Item {
let ($(ref $q ,)*) = *self;
let ($($p,)*) = ptr;
($($q.as_ref($p),)*)
}
unsafe fn uget_ptr(&self, i: &Self::Dim) -> Self::Ptr {
let ($(ref $p,)*) = *self;
($($p.uget_ptr(i), )*)
}
fn split_at(self, axis: Axis, index: Ix) -> (Self, Self) {
let ($($p,)*) = self;
let ($($p,)*) = (
$($p.split_at(axis, index), )*
);
(
($($p.0,)*),
($($p.1,)*)
)
}
}
)+
}
}
zipt_impl! {
[A ][ a],
[A B][ a b],
[A B C][ a b c],
[A B C D][ a b c d],
[A B C D E][ a b c d e],
[A B C D E F][ a b c d e f],
}
macro_rules! map_impl {
($([$notlast:ident $($p:ident)*],)+) => {
$(
#[allow(non_snake_case)]
impl<D, $($p),*> Zip<($($p,)*), D>
where D: Dimension,
$($p: NdProducer<Dim=D> ,)*
{
/// Apply a function to all elements of the input arrays,
/// visiting elements in lock step.
pub fn for_each<F>(mut self, mut function: F)
where F: FnMut($($p::Item),*)
{
self.for_each_core((), move |(), args| {
let ($($p,)*) = args;
FoldWhile::Continue(function($($p),*))
});
}
/// Apply a function to all elements of the input arrays,
/// visiting elements in lock step.
#[deprecated(note="Renamed to .for_each()", since="0.15.0")]
pub fn apply<F>(self, function: F)
where F: FnMut($($p::Item),*)
{
self.for_each(function)
}
/// Apply a fold function to all elements of the input arrays,
/// visiting elements in lock step.
///
/// # Example
///
/// The expression `tr(AᵀB)` can be more efficiently computed as
/// the equivalent expression `∑ᵢⱼ(A∘B)ᵢⱼ` (i.e. the sum of the
/// elements of the entry-wise product). It would be possible to
/// evaluate this expression by first computing the entry-wise
/// product, `A∘B`, and then computing the elementwise sum of that
/// product, but it's possible to do this in a single loop (and
/// avoid an extra heap allocation if `A` and `B` can't be
/// consumed) by using `Zip`:
///
/// ```
/// use ndarray::{array, Zip};
///
/// let a = array![[1, 5], [3, 7]];
/// let b = array![[2, 4], [8, 6]];
///
/// // Without using `Zip`. This involves two loops and an extra
/// // heap allocation for the result of `&a * &b`.
/// let sum_prod_nonzip = (&a * &b).sum();
/// // Using `Zip`. This is a single loop without any heap allocations.
/// let sum_prod_zip = Zip::from(&a).and(&b).fold(0, |acc, a, b| acc + a * b);
///
/// assert_eq!(sum_prod_nonzip, sum_prod_zip);
/// ```
pub fn fold<F, Acc>(mut self, acc: Acc, mut function: F) -> Acc
where
F: FnMut(Acc, $($p::Item),*) -> Acc,
{
self.for_each_core(acc, move |acc, args| {
let ($($p,)*) = args;
FoldWhile::Continue(function(acc, $($p),*))
}).into_inner()
}
/// Apply a fold function to the input arrays while the return
/// value is `FoldWhile::Continue`, visiting elements in lock step.
///
pub fn fold_while<F, Acc>(mut self, acc: Acc, mut function: F)
-> FoldWhile<Acc>
where F: FnMut(Acc, $($p::Item),*) -> FoldWhile<Acc>
{
self.for_each_core(acc, move |acc, args| {
let ($($p,)*) = args;
function(acc, $($p),*)
})
}
/// Tests if every element of the iterator matches a predicate.
///
/// Returns `true` if `predicate` evaluates to `true` for all elements.
/// Returns `true` if the input arrays are empty.
///
/// Example:
///
/// ```
/// use ndarray::{array, Zip};
/// let a = array![1, 2, 3];
/// let b = array![1, 4, 9];
/// assert!(Zip::from(&a).and(&b).all(|&a, &b| a * a == b));
/// ```
pub fn all<F>(mut self, mut predicate: F) -> bool
where F: FnMut($($p::Item),*) -> bool
{
!self.for_each_core((), move |_, args| {
let ($($p,)*) = args;
if predicate($($p),*) {
FoldWhile::Continue(())
} else {
FoldWhile::Done(())
}
}).is_done()
}
expand_if!(@bool [$notlast]
/// Include the producer `p` in the Zip.
///
/// ***Panics*** if `p`’s shape doesn’t match the Zip’s exactly.
pub fn and<P>(self, p: P) -> Zip<($($p,)* P::Output, ), D>
where P: IntoNdProducer<Dim=D>,
{
let part = p.into_producer();
zip_dimension_check(&self.dimension, &part);
self.build_and(part)
}
/// Include the producer `p` in the Zip.
///
/// ## Safety
///
/// The caller must ensure that the producer's shape is equal to the Zip's shape.
/// Uses assertions when debug assertions are enabled.
#[allow(unused)]
pub(crate) unsafe fn and_unchecked<P>(self, p: P) -> Zip<($($p,)* P::Output, ), D>
where P: IntoNdProducer<Dim=D>,
{
#[cfg(debug_assertions)]
{
self.and(p)
}
#[cfg(not(debug_assertions))]
{
self.build_and(p.into_producer())
}
}
/// Include the producer `p` in the Zip, broadcasting if needed.
///
/// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
///
/// ***Panics*** if broadcasting isn’t possible.
pub fn and_broadcast<'a, P, D2, Elem>(self, p: P)
-> Zip<($($p,)* ArrayView<'a, Elem, D>, ), D>
where P: IntoNdProducer<Dim=D2, Output=ArrayView<'a, Elem, D2>, Item=&'a Elem>,
D2: Dimension,
{
let part = p.into_producer().broadcast_unwrap(self.dimension.clone());
self.build_and(part)
}
fn build_and<P>(self, part: P) -> Zip<($($p,)* P, ), D>
where P: NdProducer<Dim=D>,
{
let part_layout = part.layout();
let ($($p,)*) = self.parts;
Zip {
parts: ($($p,)* part, ),
layout: self.layout.intersect(part_layout),
dimension: self.dimension,
layout_tendency: self.layout_tendency + part_layout.tendency(),
}
}
/// Map and collect the results into a new array, which has the same size as the
/// inputs.
///
/// If all inputs are c- or f-order respectively, that is preserved in the output.
pub fn map_collect<R>(self, f: impl FnMut($($p::Item,)* ) -> R) -> Array<R, D> {
self.map_collect_owned(f)
}
pub(crate) fn map_collect_owned<S, R>(self, f: impl FnMut($($p::Item,)* ) -> R)
-> ArrayBase<S, D>
where S: DataOwned<Elem = R>
{
// safe because: all elements are written before the array is completed
let shape = self.dimension.clone().set_f(self.prefer_f());
let output = <ArrayBase<S, D>>::build_uninit(shape, |output| {
// Use partial to count the number of filled elements, and can drop the right
// number of elements on unwinding (if it happens during apply/collect).
unsafe {
let output_view = output.into_raw_view_mut().cast::<R>();
self.and(output_view)
.collect_with_partial(f)
.release_ownership();
}
});
unsafe {
output.assume_init()
}
}
/// Map and collect the results into a new array, which has the same size as the
/// inputs.
///
/// If all inputs are c- or f-order respectively, that is preserved in the output.
#[deprecated(note="Renamed to .map_collect()", since="0.15.0")]
pub fn apply_collect<R>(self, f: impl FnMut($($p::Item,)* ) -> R) -> Array<R, D> {
self.map_collect(f)
}
/// Map and assign the results into the producer `into`, which should have the same
/// size as the other inputs.
///
/// The producer should have assignable items as dictated by the `AssignElem` trait,
/// for example `&mut R`.
pub fn map_assign_into<R, Q>(self, into: Q, mut f: impl FnMut($($p::Item,)* ) -> R)
where Q: IntoNdProducer<Dim=D>,
Q::Item: AssignElem<R>
{
self.and(into)
.for_each(move |$($p, )* output_| {
output_.assign_elem(f($($p ),*));
});
}
/// Map and assign the results into the producer `into`, which should have the same
/// size as the other inputs.
///
/// The producer should have assignable items as dictated by the `AssignElem` trait,
/// for example `&mut R`.
#[deprecated(note="Renamed to .map_assign_into()", since="0.15.0")]
pub fn apply_assign_into<R, Q>(self, into: Q, f: impl FnMut($($p::Item,)* ) -> R)
where Q: IntoNdProducer<Dim=D>,
Q::Item: AssignElem<R>
{
self.map_assign_into(into, f)
}
);
/// Split the `Zip` evenly in two.
///
/// It will be split in the way that best preserves element locality.
pub fn split(self) -> (Self, Self) {
debug_assert_ne!(self.size(), 0, "Attempt to split empty zip");
debug_assert_ne!(self.size(), 1, "Attempt to split zip with 1 elem");
SplitPreference::split(self)
}
}
expand_if!(@bool [$notlast]
// For collect; Last producer is a RawViewMut
#[allow(non_snake_case)]
impl<D, PLast, R, $($p),*> Zip<($($p,)* PLast), D>
where D: Dimension,
$($p: NdProducer<Dim=D> ,)*
PLast: NdProducer<Dim = D, Item = *mut R, Ptr = *mut R, Stride = isize>,
{
/// The inner workings of map_collect and par_map_collect
///
/// Apply the function and collect the results into the output (last producer)
/// which should be a raw array view; a Partial that owns the written
/// elements is returned.
///
/// Elements will be overwritten in place (in the sense of std::ptr::write).
///
/// ## Safety
///
/// The last producer is a RawArrayViewMut and must be safe to write into.
/// The producer must be c- or f-contig and have the same layout tendency
/// as the whole Zip.
///
/// The returned Partial's proxy ownership of the elements must be handled,
/// before the array the raw view points to realizes its ownership.
pub(crate) unsafe fn collect_with_partial<F>(self, mut f: F) -> Partial<R>
where F: FnMut($($p::Item,)* ) -> R
{
// Get the last producer; and make a Partial that aliases its data pointer
let (.., ref output) = &self.parts;
// debug assert that the output is contiguous in the memory layout we need
if cfg!(debug_assertions) {
let out_layout = output.layout();
assert!(out_layout.is(Layout::CORDER | Layout::FORDER));
assert!(
(self.layout_tendency <= 0 && out_layout.tendency() <= 0) ||
(self.layout_tendency >= 0 && out_layout.tendency() >= 0),
"layout tendency violation for self layout {:?}, output layout {:?},\
output shape {:?}",
self.layout, out_layout, output.raw_dim());
}
let mut partial = Partial::new(output.as_ptr());
// Apply the mapping function on this zip
// if we panic with unwinding; Partial will drop the written elements.
let partial_len = &mut partial.len;
self.for_each(move |$($p,)* output_elem: *mut R| {
output_elem.write(f($($p),*));
if std::mem::needs_drop::<R>() {
*partial_len += 1;
}
});
partial
}
}
);
impl<D, $($p),*> SplitPreference for Zip<($($p,)*), D>
where D: Dimension,
$($p: NdProducer<Dim=D> ,)*
{
fn can_split(&self) -> bool { self.size() > 1 }
fn split_preference(&self) -> (Axis, usize) {
// Always split in a way that preserves layout (if any)
let axis = self.max_stride_axis();
let index = self.len_of(axis) / 2;
(axis, index)
}
}
impl<D, $($p),*> SplitAt for Zip<($($p,)*), D>
where D: Dimension,
$($p: NdProducer<Dim=D> ,)*
{
fn split_at(self, axis: Axis, index: usize) -> (Self, Self) {
let (p1, p2) = self.parts.split_at(axis, index);
let (d1, d2) = self.dimension.split_at(axis, index);
(Zip {
dimension: d1,
layout: self.layout,
parts: p1,
layout_tendency: self.layout_tendency,
},
Zip {
dimension: d2,
layout: self.layout,
parts: p2,
layout_tendency: self.layout_tendency,
})
}
}
)+
}
}
map_impl! {
[true P1],
[true P1 P2],
[true P1 P2 P3],
[true P1 P2 P3 P4],
[true P1 P2 P3 P4 P5],
[false P1 P2 P3 P4 P5 P6],
}
/// Value controlling the execution of `.fold_while` on `Zip`.
#[derive(Debug, Copy, Clone)]
pub enum FoldWhile<T> {
/// Continue folding with this value
Continue(T),
/// Fold is complete and will return this value
Done(T),
}
impl<T> FoldWhile<T> {
/// Return the inner value
pub fn into_inner(self) -> T {
match self {
FoldWhile::Continue(x) | FoldWhile::Done(x) => x,
}
}
/// Return true if it is `Done`, false if `Continue`
pub fn is_done(&self) -> bool {
match *self {
FoldWhile::Continue(_) => false,
FoldWhile::Done(_) => true,
}
}
}