1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
use super::buffer::Buffer;
use super::AnyTensor;
use super::Code;
use super::DataType;
use super::Result;
use super::Shape;
use super::Status;
use super::Tensor;
use super::TensorType;
use libc::c_char;
use libc::c_float;
use libc::c_int;
use libc::c_uchar;
use libc::c_uint;
use libc::c_void;
use libc::size_t;
use std::cmp;
use std::ffi::CStr;
use std::ffi::CString;
use std::ffi::NulError;
use std::fmt;
use std::fmt::Display;
use std::fmt::Formatter;
use std::mem::MaybeUninit;
use std::os::raw::c_void as std_c_void;
use std::ptr;
use std::slice;
use std::str::FromStr;
use std::str::Utf8Error;
use std::sync::Arc;
#[cfg(feature = "default")]
use tensorflow_sys as tf;
#[cfg(feature = "tensorflow_runtime_linking")]
use tensorflow_sys_runtime as tf;
#[derive(Debug)]
struct GraphImpl {
inner: *mut tf::TF_Graph,
owned: bool,
}
unsafe impl Send for GraphImpl {}
unsafe impl Sync for GraphImpl {}
impl Drop for GraphImpl {
/// Graph will be deleted once no more Sessions are referencing it.
fn drop(&mut self) {
if self.owned {
unsafe {
tf::TF_DeleteGraph(self.inner);
}
}
}
}
////////////////////////
/// `ImportGraphDefOptions` holds options that can be passed to
/// `Graph::import_graph_def`.
#[derive(Debug)]
pub struct ImportGraphDefOptions {
inner: *mut tf::TF_ImportGraphDefOptions,
}
impl_new!(
ImportGraphDefOptions,
TF_NewImportGraphDefOptions,
"Creates a default ImportGraphDefOptions."
);
impl_drop!(ImportGraphDefOptions, TF_DeleteImportGraphDefOptions);
impl ImportGraphDefOptions {
/// Set the prefix to be prepended to the names of nodes in `graph_def` that will
/// be imported into `graph`.
pub fn set_prefix(&mut self, prefix: &str) -> std::result::Result<(), NulError> {
let s = CString::new(prefix)?;
unsafe {
tf::TF_ImportGraphDefOptionsSetPrefix(self.inner, s.as_ptr());
}
Ok(())
}
/// Set any imported nodes with input `src_name:src_index` to have that input
/// replaced with `dst`. `src_name` refers to a node in the graph to be imported,
/// `dst` references a node already existing in the graph being imported into.
pub fn add_input_mapping(
&mut self,
src_name: &str,
src_index: usize,
dst: &Output,
) -> std::result::Result<(), NulError> {
let s = CString::new(src_name)?;
unsafe {
tf::TF_ImportGraphDefOptionsAddInputMapping(
self.inner,
s.as_ptr(),
src_index as c_int,
dst.to_c(),
);
}
Ok(())
}
/// Set any imported nodes with control input `src_name` to have that input
/// replaced with `dst`. `src_name` refers to a node in the graph to be imported,
/// `dst` references an operation already existing in the graph being imported
/// into.
pub fn remap_control_dependency(
&mut self,
src_name: &str,
dst: &Operation,
) -> std::result::Result<(), NulError> {
let s = CString::new(src_name)?;
unsafe {
tf::TF_ImportGraphDefOptionsRemapControlDependency(self.inner, s.as_ptr(), dst.inner);
}
Ok(())
}
/// Cause the imported graph to have a control dependency on `oper`. `oper`
/// should exist in the graph being imported into.
pub fn add_control_dependency(&mut self, oper: &Operation) {
unsafe {
tf::TF_ImportGraphDefOptionsAddControlDependency(self.inner, oper.inner);
}
}
/// Add an output in `graph_def` to be returned via the `return_outputs` output
/// parameter of `import_graph_def()`. If the output is remapped via an input
/// mapping, the corresponding existing tensor in `graph` will be returned.
pub fn add_return_output(
&mut self,
oper_name: &str,
index: usize,
) -> std::result::Result<(), NulError> {
let s = CString::new(oper_name)?;
unsafe {
tf::TF_ImportGraphDefOptionsAddReturnOutput(self.inner, s.as_ptr(), index as c_int);
}
Ok(())
}
/// Add an operation in `graph_def` to be returned via the `return_opers` output
/// parameter of import_graph_def().
pub fn add_return_operation(&mut self, oper_name: &str) -> std::result::Result<(), NulError> {
let s = CString::new(oper_name)?;
unsafe {
tf::TF_ImportGraphDefOptionsAddReturnOperation(self.inner, s.as_ptr());
}
Ok(())
}
/// Returns the number of return outputs added via `add_return_output()`.
pub fn num_return_outputs(&self) -> usize {
unsafe { tf::TF_ImportGraphDefOptionsNumReturnOutputs(self.inner) as usize }
}
/// Returns the number of return operations added via `add_return_operation()`.
pub fn num_return_operations(&self) -> usize {
unsafe { tf::TF_ImportGraphDefOptionsNumReturnOperations(self.inner) as usize }
}
/// Set whether to uniquify imported operation names. If true, imported operation
/// names will be modified if their name already exists in the graph. If false,
/// conflicting names will be treated as an error. Note that this option has no
/// effect if a prefix is set, since the prefix will guarantee all names are
/// unique. Defaults to false.
pub fn set_uniquify_names(&mut self, uniquify_names: bool) {
unsafe {
tf::TF_ImportGraphDefOptionsSetUniquifyNames(self.inner, u8::from(uniquify_names));
}
}
/// If true, the specified prefix will be modified if it already exists as an
/// operation name or prefix in the graph. If false, a conflicting prefix will be
/// treated as an error. This option has no effect if no prefix is specified.
pub fn set_uniquify_prefix(&mut self, uniquify_prefix: bool) {
unsafe {
tf::TF_ImportGraphDefOptionsSetUniquifyPrefix(self.inner, u8::from(uniquify_prefix));
}
}
/// Set the execution device for nodes.
/// Only applies to nodes where a device was not already explicitly specified.
pub fn set_default_device(&mut self, device: &str) -> std::result::Result<(), NulError> {
let s = CString::new(device)?;
unsafe {
tf::TF_ImportGraphDefOptionsSetDefaultDevice(self.inner, s.as_ptr());
}
Ok(())
}
}
////////////////////////
/// ImportGraphDefResults holds results that are generated by
/// Graph::import_graph_def_with_results().
#[derive(Debug)]
pub struct ImportGraphDefResults {
inner: *mut tf::TF_ImportGraphDefResults,
gimpl: Arc<GraphImpl>,
}
impl ImportGraphDefResults {
/// Fetches the return outputs requested via ImportGraphDefOptions::add_return_output().
pub fn return_outputs(&self) -> Vec<Output> {
unsafe {
let mut num_outputs: c_int = 0;
let mut c_outputs: *mut tf::TF_Output = ptr::null_mut();
tf::TF_ImportGraphDefResultsReturnOutputs(self.inner, &mut num_outputs, &mut c_outputs);
slice::from_raw_parts(c_outputs, num_outputs as usize)
.iter()
.map(|output| Output {
operation: Operation {
inner: output.oper,
gimpl: self.gimpl.clone(),
},
index: output.index,
})
.collect()
}
}
/// Fetches the return operations requested via ImportGraphDefOptions::add_return_operation().
pub fn return_operations(&self) -> Vec<Operation> {
unsafe {
let mut num_operations: c_int = 0;
let mut c_operations: *mut *mut tf::TF_Operation = ptr::null_mut();
tf::TF_ImportGraphDefResultsReturnOperations(
self.inner,
&mut num_operations,
&mut c_operations,
);
slice::from_raw_parts(c_operations, num_operations as usize)
.iter()
.map(|operation| Operation {
inner: *operation,
gimpl: self.gimpl.clone(),
})
.collect()
}
}
/// Fetches any input mappings requested via
/// ImportGraphDefOptions::add_input_mapping() that didn't appear in the GraphDef
/// and weren't used as input to any node in the imported graph def.
pub fn missing_unused_input_mappings(
&self,
) -> std::result::Result<Vec<(&str, c_int)>, Utf8Error> {
unsafe {
let mut n: c_int = 0;
let mut c_src_names: *mut *const c_char = ptr::null_mut();
let mut src_indexes: *mut c_int = ptr::null_mut();
tf::TF_ImportGraphDefResultsMissingUnusedInputMappings(
self.inner,
&mut n,
&mut c_src_names,
&mut src_indexes,
);
let c_name_slice = slice::from_raw_parts(c_src_names, n as usize);
let index_slice = slice::from_raw_parts(src_indexes, n as usize);
let mut v = Vec::new();
for i in 0..n as usize {
let s = CStr::from_ptr(c_name_slice[i]).to_str()?;
v.push((s, index_slice[i]));
}
Ok(v)
}
}
}
impl_drop!(ImportGraphDefResults, TF_DeleteImportGraphDefResults);
////////////////////////
/// Represents a computation graph. Graphs may be shared between sessions.
/// Graphs are thread-safe when used as directed.
#[derive(Debug)]
pub struct Graph {
gimpl: Arc<GraphImpl>,
}
impl Default for Graph {
fn default() -> Self {
Self::new()
}
}
impl Graph {
/// Creates a new graph.
pub fn new() -> Graph {
unsafe {
Graph {
gimpl: Arc::new(GraphImpl {
inner: tf::TF_NewGraph(),
owned: true,
}),
}
}
}
/// Operation will only be added to graph when finish_operation() is called
/// (assuming finish_operation() does not return an error). graph must
/// not be deleted until after finish_operation() is called.
pub fn new_operation(
&mut self,
op_type: &str,
operation_name: &str,
) -> std::result::Result<OperationDescription<'_>, NulError> {
let c_op_type = CString::new(op_type)?;
let c_operation_name = CString::new(operation_name)?;
unsafe {
Ok(OperationDescription {
inner: tf::TF_NewOperation(
self.gimpl.inner,
c_op_type.as_ptr(),
c_operation_name.as_ptr(),
),
graph: self,
finished: false,
})
}
}
/// Returns the operation in the graph with the given name, if it exists.
/// If the operation does not exist, returns `Ok(None)`.
pub fn operation_by_name(
&self,
operation_name: &str,
) -> std::result::Result<Option<Operation>, NulError> {
let c_operation_name = CString::new(operation_name)?;
unsafe {
let operation =
tf::TF_GraphOperationByName(self.gimpl.inner, c_operation_name.as_ptr());
if operation.is_null() {
Ok(None)
} else {
Ok(Some(Operation {
inner: operation,
gimpl: self.gimpl.clone(),
}))
}
}
}
/// Like `operation_by_name`, except that failure to find the operation is considered an error.
pub fn operation_by_name_required(
&self,
operation_name: &str,
) -> std::result::Result<Operation, Status> {
match self.operation_by_name(operation_name)? {
Some(operation) => Ok(operation),
None => Err(Status::new_set(
Code::Unavailable,
&format!("Operation {:?} not found", operation_name),
)
.unwrap()),
}
}
/// Finds a unique operation name. The pattern must contain exactly one
/// '{}' placeholder to indicate where a unique ID can be inserted, e.g.
/// 'Add_{}' or 'while_loop_{}/Merge', and the function returns an integer
/// which, when inserted into the placeholder, yields an operation name
/// which does not appear in the graph.
pub(crate) fn generate_operation_name(&self, operation_name_pattern: &str) -> Result<i64> {
let parts: Vec<_> = operation_name_pattern.split("{}").collect();
if parts.len() != 2 {
return Err(invalid_arg!(
"operation_name_pattern must contain placeholder"
));
}
// Can't use format! because its argument must be a string literal.
let mut i = 0;
loop {
let name = format!("{}{}{}", parts[0], i, parts[1]);
let c_name = CString::new(name)?;
unsafe {
if tf::TF_GraphOperationByName(self.gimpl.inner, c_name.as_ptr()).is_null() {
return Ok(i);
}
}
i += 1;
}
}
/// Iterates over the operations in the graph.
pub fn operation_iter(&self) -> OperationIter<'_> {
OperationIter {
graph: self,
pos: 0,
}
}
/// Returns the graph definition as a protobuf.
pub fn graph_def(&self) -> Result<Vec<u8>> {
let mut status = Status::new();
unsafe {
let c_buffer = tf::TF_NewBuffer();
tf::TF_GraphToGraphDef(self.gimpl.inner, c_buffer, status.inner());
if status.is_ok() {
Ok(Buffer::from_c(c_buffer, true).into())
} else {
tf::TF_DeleteBuffer(c_buffer);
Err(status)
}
}
}
/// Returns the number of dimensions of the Tensor referenced by `output`.
///
/// If the number of dimensions in the shape is unknown, returns -1.
///
/// Returns an error if:
///
/// * `output` is not in `graph`.
pub fn num_dims<I: Into<Output>>(&self, output: I) -> Result<c_int> {
let mut status = Status::new();
unsafe {
let val = tf::TF_GraphGetTensorNumDims(
self.gimpl.inner,
output.into().to_c(),
status.inner(),
);
if status.is_ok() {
Ok(val)
} else {
Err(status)
}
}
}
/// Returns the shape of the Tensor referenced by `output`.
///
/// Returns an error if:
///
/// * `output` is not in `graph`.
pub fn tensor_shape<I: Into<Output>>(&self, output: I) -> Result<Shape> {
let mut status = Status::new();
let output = output.into();
let n = self.num_dims(output.clone())?;
if n == -1 {
return Ok(Shape(None));
}
let mut dims = Vec::with_capacity(n as usize);
unsafe {
tf::TF_GraphGetTensorShape(
self.gimpl.inner,
output.to_c(),
dims.as_mut_ptr(),
n,
status.inner(),
);
if status.is_ok() {
dims.set_len(n as usize);
Ok(Shape(Some(
dims.iter()
.map(|x| if *x < 0 { None } else { Some(*x) })
.collect(),
)))
} else {
Err(status)
}
}
}
/// Import the graph serialized in `graph_def`.
pub fn import_graph_def(
&mut self,
graph_def: &[u8],
options: &ImportGraphDefOptions,
) -> Result<()> {
let buf = Buffer::from(graph_def);
let mut status = Status::new();
unsafe {
tf::TF_GraphImportGraphDef(
self.gimpl.inner,
buf.inner(),
options.inner,
status.inner(),
);
status.into_result()
}
}
/// Import the graph serialized in `graph_def`.
pub fn import_graph_def_with_results(
&mut self,
graph_def: &[u8],
options: &ImportGraphDefOptions,
) -> Result<ImportGraphDefResults> {
let buf = Buffer::from(graph_def);
let mut status = Status::new();
unsafe {
let result = tf::TF_GraphImportGraphDefWithResults(
self.gimpl.inner,
buf.inner(),
options.inner,
status.inner(),
);
status.into_result().map(|()| ImportGraphDefResults {
inner: result,
gimpl: self.gimpl.clone(),
})
}
}
/// Import the graph serialized in `graph_def`.
pub fn import_graph_def_with_return_outputs(
&mut self,
graph_def: &[u8],
options: &ImportGraphDefOptions,
) -> Result<Vec<Output>> {
let buf = Buffer::from(graph_def);
let mut status = Status::new();
let n = options.num_return_outputs();
let mut c_return_outputs: Vec<MaybeUninit<tf::TF_Output>> = Vec::with_capacity(n);
unsafe {
c_return_outputs.set_len(n);
tf::TF_GraphImportGraphDefWithReturnOutputs(
self.gimpl.inner,
buf.inner(),
options.inner,
c_return_outputs.as_mut_ptr() as *mut tf::TF_Output,
n as c_int,
status.inner(),
);
status.into_result()?;
Ok(c_return_outputs
.iter()
.map(|x| Output::from_c(self, &x.assume_init()))
.collect())
}
}
/// Adds a copy of function `func` and optionally its gradient function
/// `grad` to the graph. Once `func`/`grad` is added to the graph, it can be
/// called by creating an operation using the function's name. Any changes
/// to `func`/`grad` (including deleting it) done after this method returns,
/// won't affect the copy of `func`/`grad` in the graph. If `func` or `grad`
/// are already in the graph, `copy_function` has no effect on them, but can
/// establish the function->gradient relationship between them if `func`
/// does not already have a gradient. If `func` already has a gradient
/// different from `grad`, an error is returned.
///
/// If `grad` is None and `func` is not in the graph, `func` is added
/// without a gradient. If `grad` is None and `func` is in the graph,
/// `copy_function` is a noop. `grad` must have appropriate signature as
/// described in the doc of GradientDef in
/// tensorflow/core/framework/function.proto.
///
/// If successful, returns () and `func` and `grad` are added to the graph.
/// Otherwise, an error is returned and the graph is unmodified.
pub fn copy_function(&mut self, func: &Function, grad: Option<&Function>) -> Result<()> {
let mut status = Status::new();
unsafe {
tf::TF_GraphCopyFunction(
self.inner(),
func.inner,
match grad {
None => ptr::null(),
Some(g) => g.inner,
},
status.inner(),
);
}
status.into_result()
}
/// Create a `Function` from a `Graph`.
///
/// # Arguments
///
/// * `fn_name` - the name of the new `Function`. Should match the operation
/// name (OpDef.name) regexp [A-Z][A-Za-z0-9_.\\-/]*. If
/// `append_hash_to_fn_name` is false, `fn_name` must be distinct from
/// other function and operation names (at least those registered in
/// graphs where this function will be used).
/// * `append_hash_to_fn_name` - If true, the actual name of the function
/// will be `fn_name` appended with
/// '_<hash_of_this_function's_definition>'. If false, the
/// function's name will be `fn_name`.
/// * `opers` - Array of operations to become the body of the function or
/// null.
/// * If `None`, all the operations in the graph will become part of the
/// function except operations referenced in `inputs`. These operations
/// must have a single output (these operations are typically
/// placeholders created for the sole purpose of representing an input.
/// We can relax this constraint if there are compelling use cases).
/// * If `Some`, all operations in it will become part of the function. In
/// particular, no automatic skipping of dummy input operations is
/// performed.
/// * `inputs` - array of `Output`s that specify the inputs to the function.
/// The names used for function inputs are normalized names of the
/// operations (usually placeholders) pointed to by `inputs`. These
/// operation names should start with a letter. Normalization will convert
/// all letters to lowercase and non-alphanumeric characters to '\_' to
/// make resulting names match the "[a-z][a-z0-9_]*" pattern for operation
/// argument names. `inputs` cannot contain the same tensor twice.
/// * `outputs` - array of `Output`s that specify the outputs of the
/// function. `outputs` can contain the same tensor more than once.
/// * `output_names` - The names of the function's outputs. `output_names`
/// array must either have the same length as `outputs` or be None. In the
/// former case, the names should match the regular expression for ArgDef
/// names - "[a-z][a-z0-9_]*". In the latter case, names for outputs will
/// be generated automatically.
/// * `opts` - various options for the function, e.g. XLA's inlining control.
/// * `description` - optional human-readable description of this function.
///
/// Note that when the same `Output` is listed as both an input and an
/// output, the corresponding function's output will equal to this input,
/// instead of the original node's output.
///
/// Callers must also satisfy the following constraints:
///
/// * `inputs` cannot refer to `Output`s within a control flow context. For
/// example, one cannot use the output of "switch" node as input.
/// * `inputs` and `outputs` cannot have reference types. Reference types
/// are not exposed through C API and are being replaced with Resources.
/// We support reference types inside function's body to support legacy
/// code. Do not use them in new code.
/// * Every node in the function's body must have all of its inputs
/// (including control inputs). In other words, for every node in the
/// body, each input must be either listed in `inputs` or must come from
/// another node in the body. In particular, it is an error to have a
/// control edge going from a node outside of the body into a node in the
/// body. This applies to control edges going from nodes referenced in
/// `inputs` to nodes in the body when the former nodes are not in the
/// body (automatically skipped or not included in explicitly specified
/// body).
///
/// # Returns
///
/// A newly created `Function` instance.
pub fn to_function<S: AsRef<str>>(
&self,
fn_name: &str,
append_hash_to_fn_name: bool,
opers: Option<&[&Operation]>,
inputs: &[Output],
outputs: &[Output],
output_names: Option<&[S]>,
opts: &FunctionOptions,
description: Option<&str>,
) -> Result<Function> {
let fn_name_cstr = CString::new(fn_name)?;
let num_opers: c_int = if let Some(ops) = &opers {
ops.len() as c_int
} else {
-1
};
#[allow(trivial_casts)]
let c_opers: Option<Vec<_>> =
opers.map(|s| s.iter().map(|op| op.inner as *const _).collect());
let c_opers_ptr: *const *const tf::TF_Operation = if let Some(ref ops) = &c_opers {
ops.as_ptr()
} else {
ptr::null()
};
let c_inputs: Vec<_> = inputs.iter().map(|x| x.to_c()).collect();
let c_outputs: Vec<_> = outputs.iter().map(|x| x.to_c()).collect();
let output_names_cstrs: Option<::std::result::Result<Vec<CString>, NulError>> =
output_names
.map(|slice: &[S]| slice.iter().map(|s: &S| CString::new(s.as_ref())).collect());
let output_names_cstrs: Option<Vec<CString>> = match output_names_cstrs {
None => None,
Some(r) => Some(r?),
};
let output_names_ptrs: Option<Vec<*const c_char>> = output_names_cstrs
.as_ref()
.map(|slice| slice.iter().map(|s| s.as_ptr()).collect());
let output_names_ptrs_ptr = match &output_names_ptrs {
None => ptr::null(),
Some(ref v) => v.as_ptr(),
};
let description_cstr = match description {
None => None,
Some(d) => Some(CString::new(d)?),
};
let description_ptr: *const c_char = if let Some(ref cstr) = &description_cstr {
cstr.as_ptr()
} else {
ptr::null()
};
let status = Status::new();
let f = unsafe {
tf::TF_GraphToFunction(
self.inner(),
fn_name_cstr.as_ptr(),
u8::from(append_hash_to_fn_name),
num_opers,
c_opers_ptr,
c_inputs.len() as c_int,
c_inputs.as_ptr(),
c_outputs.len() as c_int,
c_outputs.as_ptr(),
output_names_ptrs_ptr,
opts.inner,
description_ptr,
status.inner,
)
};
status.into_result()?;
Ok(Function { inner: f })
}
/// Returns the number of functions registered in the graph.
pub fn num_functions(&self) -> c_int {
unsafe { tf::TF_GraphNumFunctions(self.inner()) }
}
/// Returns functions registered in the graph.
pub fn get_functions(&self) -> Result<Vec<Function>> {
unsafe {
let num = tf::TF_GraphNumFunctions(self.inner());
let mut funcs = Vec::with_capacity(num as usize);
let status = Status::new();
let num = tf::TF_GraphGetFunctions(self.inner(), funcs.as_mut_ptr(), num, status.inner);
status.into_result()?;
funcs.set_len(num as usize);
Ok(funcs.iter().map(|f| Function { inner: *f }).collect())
}
}
/// Returns the serialized OpDef proto with name `op_name`, or a bad status if no
/// such op exists. This can return OpDefs of functions copied into the graph.
pub fn get_op_def(&self, op_name: &str) -> Result<Vec<u8>> {
let status = Status::new();
let c_op_name = CString::new(op_name)?;
unsafe {
let mut buffer = Buffer::new_unallocated();
tf::TF_GraphGetOpDef(
self.inner(),
c_op_name.as_ptr(),
buffer.inner_mut(),
status.inner,
);
status.into_result().map(|()| buffer.into())
}
}
/// Returns the serialized VersionDef proto for this graph.
pub fn versions(&self) -> Result<Vec<u8>> {
let status = Status::new();
unsafe {
let mut buffer = Buffer::new_unallocated();
tf::TF_GraphVersions(self.inner(), buffer.inner_mut(), status.inner);
status.into_result().map(|()| buffer.into())
}
}
/// Attempts to evaluate `output`. This will only be possible if `output`
/// doesn't depend on any graph inputs (this function is safe to call if
/// this isn't the case though).
///
/// If the evaluation is successful, this function returns the tensor.
/// Otherwise returns None. An error status is returned if something is
/// wrong with the graph or input or the type requested doesn't match the
/// type of the tensor.
pub fn try_evaluate_constant<T: TensorType>(
&self,
output: &Output,
) -> Result<Option<Tensor<T>>> {
let status = Status::new();
unsafe {
let mut c_tensor: *mut tf::TF_Tensor = ptr::null_mut();
let success = tf::TF_TryEvaluateConstant(
self.inner(),
output.to_c(),
&mut c_tensor,
status.inner,
);
status.into_result()?;
if success != 0 {
match Tensor::from_tf_tensor(c_tensor) {
None => Err(invalid_arg!("Tensor types do not match")),
Some(t) => Ok(Some(t)),
}
} else {
Ok(None)
}
}
}
/// Adds operations to compute the partial derivatives of sum of `y`s
/// w.r.t `x`s, i.e., d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
///
/// `dx` are used as initial gradients (which represent the symbolic partial
/// derivatives of some loss function `L` w.r.t. `y`).
/// `dx` must be None or have the same length as `y`.
/// If `dx` is None, the implementation will use dx of `OnesLike` for all
/// shapes in `y`.
/// `prefix` names the scope into which all gradients operations are being
/// added. `prefix` must be unique within the provided graph otherwise this
/// operation will fail. If `prefix` is None, gradient nodes are
/// automatically named under the "gradients/" prefix. To guarantee name
/// uniqueness, subsequent calls to the same graph will append an
/// incremental tag to the prefix: "gradients_1/", "gradients_2/", ...
///
/// WARNING: This function does not yet support all the gradients that
/// python supports. See
/// <https://www.tensorflow.org/code/tensorflow/cc/gradients/README.md>
/// for instructions on how to add C++ more gradients.
pub fn add_gradients(
&mut self,
prefix: Option<&str>,
y: &[Output],
x: &[Output],
dx: Option<&[Output]>,
) -> Result<Vec<Option<Output>>> {
if let Some(dx) = dx {
if dx.len() != y.len() {
return Err(invalid_arg!(
"dx.len() must equal y.len() ({} vs. {})",
dx.len(),
y.len()
));
}
}
let c_y: Vec<_> = y.iter().map(Output::to_c).collect();
let c_x: Vec<_> = x.iter().map(Output::to_c).collect();
let c_dx: Option<Vec<_>> = dx.map(|v| v.iter().map(Output::to_c).collect());
let dx_ptr = match c_dx {
Some(v) => v.as_ptr(),
None => ptr::null(),
};
let prefix_cstr = match prefix {
Some(s) => Some(CString::new(s)?),
None => None,
};
let prefix_ptr: *const c_char = if let Some(ref cstr) = &prefix_cstr {
cstr.as_ptr()
} else {
ptr::null()
};
let mut dy = Vec::with_capacity(x.len());
let mut status = Status::new();
unsafe {
tf::TF_AddGradientsWithPrefix(
self.inner(),
prefix_ptr,
c_y.as_ptr() as *mut _,
y.len() as i32,
c_x.as_ptr() as *mut _,
x.len() as i32,
dx_ptr as *mut _,
status.inner(),
dy.as_mut_ptr(),
);
if status.is_ok() {
dy.set_len(x.len());
Ok(dy
.iter()
.map(|o| Output::from_c_optional(self, o))
.collect())
} else {
Err(status)
}
}
}
pub(crate) fn inner(&self) -> *mut tf::TF_Graph {
self.gimpl.inner
}
pub(crate) unsafe fn from_c(inner: *mut tf::TF_Graph) -> Self {
Graph {
gimpl: Arc::new(GraphImpl {
inner,
owned: false,
}),
}
}
}
////////////////////////
/// Iterator over the operations in a `Graph`.
#[derive(Debug)]
pub struct OperationIter<'a> {
// We could just have a gimpl field, but keeping a reference to the Graph
// means that the graph can't be modified while iterating through it.
graph: &'a Graph,
pos: size_t,
}
impl<'a> Iterator for OperationIter<'a> {
type Item = Operation;
fn next(&mut self) -> Option<Self::Item> {
unsafe {
let operation = tf::TF_GraphNextOperation(self.graph.gimpl.inner, &mut self.pos);
if operation.is_null() {
None
} else {
Some(Operation {
inner: operation,
gimpl: self.graph.gimpl.clone(),
})
}
}
}
}
////////////////////////
c_enum!(
TF_AttrType,
// TODO: Provide docs on variants once they are added to c_api.h.
/// Describes the type of the value of an attribute on an operation.
#[allow(missing_docs)]
AttrType {
String = 0,
Int = 1,
Float = 2,
Bool = 3,
Type = 4,
Shape = 5,
Tensor = 6,
Placeholder = 7,
Func = 8,
});
/// AttrMetadata describes the value of an attribute on an operation.
#[derive(Clone, Debug, Copy)]
pub struct AttrMetadata {
/// Length of the list, or None if the attribute is not a list.
pub list_size: Option<i64>,
/// Type of elements of the list if the attribute is a list.
/// Type of the single value stored in the attribute if not a list.
pub attr_type: AttrType,
/// Total size the attribute value.
/// The units of total_size depend on list_size and attr_type.
///
/// 1. If attr_type == AttrType::String and list_size == None
/// then total_size is the byte size of the string valued attribute.
/// 2. If attr_type == AttrType::String and list_size == Some(_)
/// then total_size is the cumulative byte size of all the strings in the
/// list.
/// 3. If attr_type == AttrType::Shape and list_size == None
/// then total_size is the number of dimensions of the shape valued
/// attribute, or -1 if its rank is unknown.
/// 4. If attr_type == AttrType::SHAPE and list_size == Some(_)
/// then total_size is the cumulative number of dimensions of all shapes
/// in the list.
/// 4. Otherwise, total_size is undefined.
pub total_size: i64,
}
impl AttrMetadata {
fn from_c(metadata: tf::TF_AttrMetadata) -> Self {
AttrMetadata {
list_size: if metadata.is_list == 0 {
None
} else {
Some(metadata.list_size)
},
attr_type: AttrType::from_c(metadata.type_),
total_size: metadata.total_size,
}
}
}
////////////////////////
/// An `Operation` is a node in a `Graph`.
/// It is a computation which accepts inputs and produces outputs.
#[derive(Debug, Clone)]
pub struct Operation {
inner: *mut tf::TF_Operation,
gimpl: Arc<GraphImpl>,
}
unsafe impl Send for Operation {}
unsafe impl Sync for Operation {}
impl Operation {
/// Returns the name of the operation.
///
/// This is the name of the specific computational step,
/// not an operation type, so it may look like `'add_x_and_y'` instead of `'Add'`,
/// although it may be a generated ID like `'Add_123'`.
pub fn name(&self) -> std::result::Result<String, Utf8Error> {
unsafe {
CStr::from_ptr(tf::TF_OperationName(self.inner))
.to_str()
.map(|x| x.to_string())
}
}
/// Returns the type of operation.
/// This will be something like `'Add'`, `'Mul'`, etc.
pub fn op_type(&self) -> std::result::Result<String, Utf8Error> {
unsafe {
CStr::from_ptr(tf::TF_OperationOpType(self.inner))
.to_str()
.map(|x| x.to_string())
}
}
/// Returns the device for this operation.
/// The empty string means unconstrained.
pub fn device(&self) -> std::result::Result<String, Utf8Error> {
unsafe {
CStr::from_ptr(tf::TF_OperationDevice(self.inner))
.to_str()
.map(|x| x.to_string())
}
}
/// Returns the number of outputs.
pub fn num_outputs(&self) -> usize {
unsafe { tf::TF_OperationNumOutputs(self.inner) as usize }
}
/// Returns the type of a specific output.
pub fn output_type(&self, index: usize) -> DataType {
unsafe {
DataType::from_c(tf::TF_OperationOutputType(tf::TF_Output {
oper: self.inner,
index: index as c_int,
}))
}
}
/// Returns the given output edge.
/// The index argument is the index into the current operation's output array,
pub fn output(&self, index: usize) -> Output {
crate::Output {
operation: self.clone(),
index: index as c_int,
}
}
// TODO: Figure out what this does and document it.
#[allow(missing_docs)]
pub fn output_list_length(&self, arg_name: &str) -> Result<usize> {
let c_arg_name = CString::new(arg_name)?;
let mut status = Status::new();
let length = unsafe {
tf::TF_OperationOutputListLength(self.inner, c_arg_name.as_ptr(), status.inner())
};
if status.is_ok() {
Ok(length as usize)
} else {
Err(status)
}
}
/// Returns the number of inputs.
pub fn num_inputs(&self) -> usize {
unsafe { tf::TF_OperationNumInputs(self.inner) as usize }
}
/// Returns the type of a specific input.
pub fn input_type(&self, index: usize) -> DataType {
unsafe {
DataType::from_c(tf::TF_OperationInputType(tf::TF_Input {
oper: self.inner,
index: index as c_int,
}))
}
}
// TODO: Figure out what this does and document it.
#[allow(missing_docs)]
pub fn input_list_length(&self, arg_name: &str) -> Result<usize> {
let c_arg_name = CString::new(arg_name)?;
let mut status = Status::new();
let length = unsafe {
tf::TF_OperationInputListLength(self.inner, c_arg_name.as_ptr(), status.inner())
};
if status.is_ok() {
Ok(length as usize)
} else {
Err(status)
}
}
/// Returns the given input edge.
/// The index argument is the index into the current operation's input array,
/// and the return value is the source operation and the index into its output array.
pub fn input(&self, index: usize) -> (Operation, usize) {
unsafe {
let port = tf::TF_OperationInput(tf::TF_Input {
oper: self.inner,
index: index as c_int,
});
(
Operation {
inner: port.oper,
gimpl: self.gimpl.clone(),
},
port.index as usize,
)
}
}
/// Returns the number of consumers of a specific output.
pub fn output_num_consumers(&self, index: usize) -> usize {
unsafe {
tf::TF_OperationOutputNumConsumers(tf::TF_Output {
oper: self.inner,
index: index as c_int,
}) as usize
}
}
/// Returns the consumers of a specific output.
/// The index argument is the index into the current operation's output array,
/// and the return value is a vector of the destination operation and the index
/// into its input array.
pub fn output_consumers(&self, index: usize) -> Vec<(Operation, usize)> {
unsafe {
let num_consumers = tf::TF_OperationOutputNumConsumers(tf::TF_Output {
oper: self.inner,
index: index as c_int,
});
let mut vec = <Vec<tf::TF_Input>>::with_capacity(num_consumers as usize);
let len = tf::TF_OperationOutputConsumers(
tf::TF_Output {
oper: self.inner,
index: index as c_int,
},
vec.as_mut_ptr(),
num_consumers as c_int,
);
vec.set_len(len as usize);
vec.into_iter()
.map(|port| {
(
Operation {
inner: port.oper,
gimpl: self.gimpl.clone(),
},
port.index as usize,
)
})
.collect()
}
}
/// Returns the number of control inputs.
pub fn num_control_inputs(&self) -> usize {
unsafe { tf::TF_OperationNumControlInputs(self.inner) as usize }
}
/// Returns the control inputs.
pub fn control_inputs(&self) -> Vec<Operation> {
unsafe {
let num_consumers = tf::TF_OperationNumControlInputs(self.inner);
let mut vec = <Vec<*mut tf::TF_Operation>>::with_capacity(num_consumers as usize);
let len = tf::TF_OperationGetControlInputs(
self.inner,
vec.as_mut_ptr(),
num_consumers as c_int,
);
vec.set_len(cmp::min(num_consumers, len) as usize);
vec.into_iter()
.map(|operation| Operation {
inner: operation,
gimpl: self.gimpl.clone(),
})
.collect()
}
}
/// Returns the number of control outputs.
pub fn num_control_outputs(&self) -> usize {
unsafe { tf::TF_OperationNumControlOutputs(self.inner) as usize }
}
/// Returns the control outputs.
pub fn control_outputs(&self) -> Vec<Operation> {
unsafe {
let num_consumers = tf::TF_OperationNumControlOutputs(self.inner);
let mut vec = <Vec<*mut tf::TF_Operation>>::with_capacity(num_consumers as usize);
let len =
tf::TF_OperationGetControlOutputs(self.inner, vec.as_mut_ptr(), vec.len() as c_int);
vec.set_len(len as usize);
vec.into_iter()
.map(|operation| Operation {
inner: operation,
gimpl: self.gimpl.clone(),
})
.collect()
}
}
/// Returns metadata about the value of the attribute `attr_name`.
pub fn get_attr_metadata(&self, attr_name: &str) -> Result<AttrMetadata> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if status.is_ok() {
Ok(AttrMetadata::from_c(metadata))
} else {
Err(status)
}
}
}
/// Returns the value of the attribute `attr_name`.
pub fn get_attr_string(&self, attr_name: &str) -> Result<String> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if !status.is_ok() {
return Err(status);
}
let mut v: Vec<MaybeUninit<u8>> = Vec::with_capacity(metadata.total_size as usize);
v.set_len(metadata.total_size as usize);
tf::TF_OperationGetAttrString(
self.inner,
c_attr_name.as_ptr(),
v.as_mut_ptr() as *mut std::os::raw::c_void,
metadata.total_size as usize,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
Ok(CString::new(
v.into_iter()
.map(|x| MaybeUninit::assume_init(x))
.collect::<Vec<_>>(),
)?
.into_string()?)
}
}
/// Get the list of strings in the value of the attribute `attr_name`.
pub fn get_attr_string_list(&self, attr_name: &str) -> Result<Vec<String>> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if !status.is_ok() {
return Err(status);
}
let mut storage: Vec<MaybeUninit<u8>> =
Vec::with_capacity(metadata.total_size as usize);
storage.set_len(metadata.total_size as usize);
let mut values: Vec<*const std::os::raw::c_char> =
Vec::with_capacity(metadata.list_size as usize);
let mut lengths: Vec<size_t> = Vec::with_capacity(metadata.list_size as usize);
tf::TF_OperationGetAttrStringList(
self.inner,
c_attr_name.as_ptr(),
values.as_mut_ptr() as *mut *mut std::os::raw::c_void,
lengths.as_mut_ptr(),
metadata.list_size as i32,
storage.as_mut_ptr() as *mut std::os::raw::c_void,
metadata.total_size as usize,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
values.set_len(metadata.list_size as usize);
lengths.set_len(metadata.list_size as usize);
let mut strings = Vec::with_capacity(metadata.list_size as usize);
for i in 0..metadata.list_size as usize {
let s = slice::from_raw_parts(values[i] as *const u8, lengths[i]);
strings.push(std::str::from_utf8(s)?.to_string());
}
Ok(strings)
}
}
/// Returns the value of the attribute `attr_name`.
pub fn get_attr_int(&self, attr_name: &str) -> Result<i64> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
let mut value: i64 = 0;
unsafe {
tf::TF_OperationGetAttrInt(
self.inner,
c_attr_name.as_ptr(),
&mut value,
status.inner(),
);
}
if !status.is_ok() {
return Err(status);
}
Ok(value)
}
/// Get the list of ints in the value of the attribute `attr_name`.
pub fn get_attr_int_list(&self, attr_name: &str) -> Result<Vec<i64>> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if !status.is_ok() {
return Err(status);
}
let mut values: Vec<MaybeUninit<i64>> = Vec::with_capacity(metadata.list_size as usize);
values.set_len(metadata.list_size as usize);
tf::TF_OperationGetAttrIntList(
self.inner,
c_attr_name.as_ptr(),
values.as_mut_ptr() as *mut i64,
metadata.list_size as c_int,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
Ok(values
.into_iter()
.map(|x| MaybeUninit::assume_init(x))
.collect())
}
}
/// Returns the value of the attribute `attr_name`.
pub fn get_attr_float(&self, attr_name: &str) -> Result<f32> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
let mut value: c_float = 0.0;
unsafe {
tf::TF_OperationGetAttrFloat(
self.inner,
c_attr_name.as_ptr(),
&mut value,
status.inner(),
);
}
if !status.is_ok() {
return Err(status);
}
#[allow(trivial_numeric_casts)]
#[allow(clippy::unnecessary_cast)]
Ok(value as f32)
}
/// Get the list of floats in the value of the attribute `attr_name`.
pub fn get_attr_float_list(&self, attr_name: &str) -> Result<Vec<f32>> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if !status.is_ok() {
return Err(status);
}
let mut values: Vec<MaybeUninit<c_float>> =
Vec::with_capacity(metadata.list_size as usize);
values.set_len(metadata.list_size as usize);
tf::TF_OperationGetAttrFloatList(
self.inner,
c_attr_name.as_ptr(),
values.as_mut_ptr() as *mut c_float,
metadata.list_size as c_int,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
#[allow(trivial_numeric_casts)]
#[allow(clippy::unnecessary_cast)]
Ok(values.iter().map(|f| f.assume_init() as f32).collect())
}
}
/// Returns the value of the attribute `attr_name`.
pub fn get_attr_bool(&self, attr_name: &str) -> Result<bool> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
let mut value: c_uchar = 0;
unsafe {
tf::TF_OperationGetAttrBool(
self.inner,
c_attr_name.as_ptr(),
&mut value,
status.inner(),
);
}
if !status.is_ok() {
return Err(status);
}
Ok(value != 0)
}
/// Get the list of bools in the value of the attribute `attr_name`.
pub fn get_attr_bool_list(&self, attr_name: &str) -> Result<Vec<bool>> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if !status.is_ok() {
return Err(status);
}
let mut values: Vec<MaybeUninit<c_uchar>> =
Vec::with_capacity(metadata.list_size as usize);
values.set_len(metadata.list_size as usize);
tf::TF_OperationGetAttrBoolList(
self.inner,
c_attr_name.as_ptr(),
values.as_mut_ptr() as *mut c_uchar,
metadata.list_size as c_int,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
#[allow(trivial_numeric_casts)]
Ok(values.iter().map(|f| f.assume_init() != 0).collect())
}
}
/// Returns the value of the attribute `attr_name`.
pub fn get_attr_type(&self, attr_name: &str) -> Result<DataType> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
let mut value: tf::TF_DataType = tf::TF_FLOAT;
unsafe {
tf::TF_OperationGetAttrType(
self.inner,
c_attr_name.as_ptr(),
&mut value,
status.inner(),
);
}
if !status.is_ok() {
return Err(status);
}
Ok(DataType::from_c(value))
}
/// Get the list of types in the value of the attribute `attr_name`.
pub fn get_attr_type_list(&self, attr_name: &str) -> Result<Vec<DataType>> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if !status.is_ok() {
return Err(status);
}
let mut values: Vec<MaybeUninit<tf::TF_DataType>> =
Vec::with_capacity(metadata.list_size as usize);
values.set_len(metadata.list_size as usize);
tf::TF_OperationGetAttrTypeList(
self.inner,
c_attr_name.as_ptr(),
values.as_mut_ptr() as *mut tf::TF_DataType,
metadata.list_size as c_int,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
Ok(values
.iter()
.map(|x| DataType::from_c(x.assume_init()))
.collect())
}
}
/// Returns the value of the attribute `attr_name`.
pub fn get_attr_shape(&self, attr_name: &str) -> Result<Shape> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if !status.is_ok() {
return Err(status);
}
if metadata.total_size == -1 {
return Ok(Shape(None));
}
let mut v: Vec<MaybeUninit<i64>> = Vec::with_capacity(metadata.total_size as usize);
v.set_len(metadata.total_size as usize);
tf::TF_OperationGetAttrShape(
self.inner,
c_attr_name.as_ptr(),
v.as_mut_ptr() as *mut i64,
metadata.total_size as c_int,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
Ok(Shape(Some(
v.iter()
.map(|x| {
let x = x.assume_init();
if x < 0 {
None
} else {
Some(x)
}
})
.collect(),
)))
}
}
/// Get the list of shapes in the value of the attribute `attr_name`.
pub fn get_attr_shape_list(&self, attr_name: &str) -> Result<Vec<Shape>> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if !status.is_ok() {
return Err(status);
}
let mut storage: Vec<MaybeUninit<i64>> =
Vec::with_capacity(metadata.total_size as usize);
storage.set_len(metadata.total_size as usize);
let mut dims: Vec<*mut i64> = Vec::with_capacity(metadata.list_size as usize);
let mut num_dims: Vec<c_int> = Vec::with_capacity(metadata.list_size as usize);
tf::TF_OperationGetAttrShapeList(
self.inner,
c_attr_name.as_ptr(),
dims.as_mut_ptr(),
num_dims.as_mut_ptr(),
metadata.list_size as i32,
storage.as_mut_ptr() as *mut i64,
metadata.total_size as c_int,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
dims.set_len(metadata.list_size as usize);
num_dims.set_len(metadata.list_size as usize);
let mut shapes = Vec::with_capacity(metadata.list_size as usize);
for i in 0..metadata.list_size as usize {
shapes.push(Shape(if num_dims[i] == -1 {
None
} else {
let mut v = Vec::new();
for j in 0..num_dims[i] {
v.push(match *dims[i].offset(j as isize) {
-1 => None,
x => Some(x),
});
}
Some(v)
}));
}
Ok(shapes)
}
}
/// Returns the binary-serialized TensorShapeProto value of the attribute
/// `attr_name`.
pub fn get_attr_tensor_shape_proto(&self, attr_name: &str) -> Result<Vec<u8>> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let mut buf = Buffer::<u8>::new_unallocated();
tf::TF_OperationGetAttrTensorShapeProto(
self.inner,
c_attr_name.as_ptr(),
buf.inner_mut(),
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
Ok(buf.into())
}
}
/// Get the list of binary-serialized TensorShapeProtos in the value of the
/// attribute `attr_name`.
pub fn get_attr_tensor_shape_proto_list(&self, attr_name: &str) -> Result<Vec<Vec<u8>>> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if !status.is_ok() {
return Err(status);
}
let mut c_buffers = Vec::with_capacity(metadata.list_size as usize);
for _ in 0..metadata.list_size {
c_buffers.push(ptr::null_mut());
}
tf::TF_OperationGetAttrTensorShapeProtoList(
self.inner,
c_attr_name.as_ptr(),
c_buffers.as_mut_ptr(),
metadata.list_size as c_int,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
Ok(c_buffers
.iter()
.map(|b| Buffer::from_c(*b, true).into())
.collect())
}
}
/// Returns the value of the attribute `attr_name`. Returns an error if the
/// type of the tensor value does not match the type of the generic
/// argument.
pub fn get_attr_tensor<T: TensorType>(&self, attr_name: &str) -> Result<Tensor<T>> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let mut c_tensor: *mut tf::TF_Tensor = ptr::null_mut();
tf::TF_OperationGetAttrTensor(
self.inner,
c_attr_name.as_ptr(),
&mut c_tensor,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
match Tensor::from_tf_tensor(c_tensor) {
None => Err(invalid_arg!("Tensor types do not match")),
Some(t) => Ok(t),
}
}
}
/// Get the list of tensors in the value of the attribute `attr_name`.
/// Returns an error if the type of the tensor value does not match the type
/// of the generic argument.
pub fn get_attr_tensor_list<T: TensorType>(&self, attr_name: &str) -> Result<Vec<Tensor<T>>> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
let metadata =
tf::TF_OperationGetAttrMetadata(self.inner, c_attr_name.as_ptr(), status.inner());
if !status.is_ok() {
return Err(status);
}
let mut c_tensors = Vec::with_capacity(metadata.list_size as usize);
for _ in 0..metadata.list_size {
c_tensors.push(ptr::null_mut());
}
tf::TF_OperationGetAttrTensorList(
self.inner,
c_attr_name.as_ptr(),
c_tensors.as_mut_ptr(),
metadata.list_size as c_int,
status.inner(),
);
if !status.is_ok() {
return Err(status);
}
c_tensors
.iter()
.map(|t| match Tensor::from_tf_tensor(*t) {
None => Err(invalid_arg!("Tensor types do not match")),
Some(t) => Ok(t),
})
.collect()
}
}
/// Returns the binary-serialized AttrValue proto representation of the
/// value of the `attr_name` attr.
pub fn get_attr_value_proto(&self, attr_name: &str) -> Result<Vec<u8>> {
let status = Status::new();
let attr_name_cstr = CString::new(attr_name)?;
unsafe {
let mut buf = Buffer::new_unallocated();
tf::TF_OperationGetAttrValueProto(
self.inner,
attr_name_cstr.as_ptr(),
buf.inner_mut(),
status.inner,
);
status.into_result()?;
Ok(buf.into())
}
}
pub(crate) fn inner(&self) -> *mut tf::TF_Operation {
self.inner
}
}
impl From<Operation> for Output {
/// Creates an Output for index 0.
fn from(operation: Operation) -> Output {
Output {
operation,
index: 0,
}
}
}
////////////////////////
/// A `Input` is one end of a graph edge.
/// It holds an operation and an index into the inputs of that operation.
#[derive(Debug, Copy, Clone)]
pub struct Input<'a> {
/// Operation the edge connects to.
pub operation: &'a Operation,
/// Index into either the inputs of the operation.
pub index: c_int,
}
////////////////////////
/// A `Output` is one end of a graph edge.
/// It holds an operation and an index into the outputs of that operation.
#[derive(Debug, Clone)]
pub struct Output {
/// Operation the edge connects to.
pub operation: Operation,
/// Index into either the outputs of the operation.
pub index: c_int,
}
impl Output {
pub(crate) fn to_c(&self) -> tf::TF_Output {
tf::TF_Output {
oper: self.operation.inner,
index: self.index,
}
}
pub(crate) fn from_c(graph: &Graph, output: &tf::TF_Output) -> Self {
Output {
operation: Operation {
inner: output.oper,
gimpl: graph.gimpl.clone(),
},
index: output.index,
}
}
pub(crate) fn from_c_optional(graph: &Graph, output: &tf::TF_Output) -> Option<Self> {
if output.oper.is_null() {
None
} else {
Some(Output {
operation: Operation {
inner: output.oper,
gimpl: graph.gimpl.clone(),
},
index: output.index,
})
}
}
/// Returns the name of this output.
pub fn name(&self) -> Result<OutputName> {
Ok(OutputName {
name: self.operation.name()?,
index: self.index,
})
}
}
////////////////////////
/// Names a specific Output in the graph.
#[derive(Clone, PartialEq, Eq, Hash, Debug, Default)]
pub struct OutputName {
/// Name of the operation the edge connects to.
pub name: String,
/// Index into either the outputs of the operation.
pub index: c_int,
}
impl FromStr for OutputName {
type Err = Status;
fn from_str(s: &str) -> Result<Self> {
let splits: Vec<_> = s.split(':').collect();
let index = match splits.len() {
2 => splits[1].parse::<c_int>()?,
1 => 0,
_ => {
return Err(Status::new_set_lossy(
Code::InvalidArgument,
"Name contains more than one colon (':')",
))
}
};
Ok(Self {
name: splits[0].to_string(),
index,
})
}
}
impl Display for OutputName {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}:{}", self.name, self.index)
}
}
////////////////////////
/// An `OperationDescription` is an `Operation` in the process of being built
/// (i.e. the builder pattern).
///
/// An `OperationDescription` is required to be finished before the graph
/// goes out of scope,
/// so `finish()` will be called on drop if it was not already called.
#[derive(Debug)]
pub struct OperationDescription<'a> {
inner: *mut tf::TF_OperationDescription,
// This keeps self from outliving the Graph, which is required by
// the docs on TF_NewOperation.
graph: &'a Graph,
finished: bool,
}
impl<'a> Drop for OperationDescription<'a> {
fn drop(&mut self) {
if !self.finished {
unsafe {
// TF_NewOperation requires us to make sure TF_FinishOperation is called before the
// graph is deleted. Combined with guaranteeing that OperationDescription does
// not outlive Graph, this ensures that the contract is held.
let status = tf::TF_NewStatus();
tf::TF_FinishOperation(self.inner, status);
tf::TF_DeleteStatus(status);
}
}
}
}
impl<'a> OperationDescription<'a> {
/// Builds the operation and adds it to the graph.
pub fn finish(mut self) -> Result<Operation> {
self.finished = true; // used by the drop code
let mut status = Status::new();
let operation = unsafe { tf::TF_FinishOperation(self.inner, status.inner()) };
if status.is_ok() {
Ok(Operation {
inner: operation,
gimpl: self.graph.gimpl.clone(),
})
} else {
Err(status)
}
}
/// Sets the preferred device.
/// The empty string means unconstrained.
pub fn set_device(&mut self, device: &str) -> std::result::Result<(), NulError> {
let c_device = CString::new(device)?;
unsafe {
tf::TF_SetDevice(self.inner, c_device.as_ptr());
}
Ok(())
}
/// Adds an input to this operation.
///
/// The index in the port is an index into the source operation's output array.
pub fn add_input<I: Into<Output>>(&mut self, input: I) {
unsafe {
tf::TF_AddInput(self.inner, input.into().to_c());
}
}
/// Adds multiple inputs to this operation.
///
/// The index in the ports is an index into the source operation's output array.
pub fn add_input_list(&mut self, inputs: &[Output]) {
let c_inputs: Vec<tf::TF_Output> = inputs.iter().map(|x| x.to_c()).collect();
unsafe {
tf::TF_AddInputList(self.inner, c_inputs.as_ptr(), c_inputs.len() as c_int);
}
}
/// Adds a control input.
pub fn add_control_input(&mut self, input: &Operation) {
unsafe {
tf::TF_AddControlInput(self.inner, input.inner);
}
}
/// Sets the value of a string attribute.
#[allow(trivial_numeric_casts)]
pub fn set_attr_string(
&mut self,
attr_name: &str,
value: &str,
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
let c_value = value.as_bytes();
unsafe {
tf::TF_SetAttrString(
self.inner,
c_attr_name.as_ptr(),
c_value.as_ptr() as *const std_c_void,
c_value.len() as size_t,
);
}
Ok(())
}
/// Sets the value of an attribute which holds a list of strings.
#[allow(trivial_numeric_casts)]
pub fn set_attr_string_list<S: AsRef<str>>(
&mut self,
attr_name: &str,
value: &[S],
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
let bytes: Vec<&[u8]> = value.iter().map(|x| x.as_ref().as_bytes()).collect();
let ptrs: Vec<*const c_void> = bytes.iter().map(|x| x.as_ptr() as *const c_void).collect();
let lens: Vec<size_t> = bytes.iter().map(|x| x.len() as size_t).collect();
unsafe {
tf::TF_SetAttrStringList(
self.inner,
c_attr_name.as_ptr(),
ptrs.as_ptr() as *const *const std_c_void,
lens.as_ptr(),
ptrs.len() as c_int,
);
}
Ok(())
}
/// Sets the value of a function attribute.
#[allow(trivial_numeric_casts)]
pub fn set_attr_func_name(
&mut self,
attr_name: &str,
value: &str,
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
let c_value = value.as_bytes();
unsafe {
tf::TF_SetAttrFuncName(
self.inner,
c_attr_name.as_ptr(),
c_value.as_ptr() as *const c_char,
c_value.len() as size_t,
);
}
Ok(())
}
/// Sets an int-valued attribute.
pub fn set_attr_int(
&mut self,
attr_name: &str,
value: i64,
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
unsafe {
tf::TF_SetAttrInt(self.inner, c_attr_name.as_ptr(), value);
}
Ok(())
}
/// Sets an attribute which holds an array of ints.
pub fn set_attr_int_list(
&mut self,
attr_name: &str,
value: &[i64],
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
unsafe {
tf::TF_SetAttrIntList(
self.inner,
c_attr_name.as_ptr(),
value.as_ptr(),
value.len() as i32,
);
}
Ok(())
}
/// Sets a float-valued attribute.
pub fn set_attr_float(
&mut self,
attr_name: &str,
value: f32,
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
unsafe {
tf::TF_SetAttrFloat(self.inner, c_attr_name.as_ptr(), value);
}
Ok(())
}
/// Sets an attribute which holds an array of floats.
#[allow(trivial_numeric_casts)]
pub fn set_attr_float_list(
&mut self,
attr_name: &str,
value: &[f32],
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
// Allow trivial_numeric_casts here because f32 is not necessarily equal to c_float.
let c_value: Vec<c_float> = value.iter().map(|x| *x as c_float).collect();
unsafe {
tf::TF_SetAttrFloatList(
self.inner,
c_attr_name.as_ptr(),
c_value.as_ptr(),
c_value.len() as i32,
);
}
Ok(())
}
/// Sets a boolean-valued attribute.
pub fn set_attr_bool(
&mut self,
attr_name: &str,
value: bool,
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
unsafe {
tf::TF_SetAttrBool(self.inner, c_attr_name.as_ptr(), u8::from(value));
}
Ok(())
}
/// Sets an attribute which holds an array of booleans.
pub fn set_attr_bool_list(
&mut self,
attr_name: &str,
value: &[bool],
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
let c_value: Vec<c_uchar> = value.iter().map(|x| u8::from(*x)).collect();
unsafe {
tf::TF_SetAttrBoolList(
self.inner,
c_attr_name.as_ptr(),
c_value.as_ptr(),
c_value.len() as c_int,
);
}
Ok(())
}
/// Sets a type-valued attribute.
pub fn set_attr_type(
&mut self,
attr_name: &str,
value: DataType,
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
unsafe {
tf::TF_SetAttrType(self.inner, c_attr_name.as_ptr(), value.to_c());
}
Ok(())
}
/// Sets an attribute which holds an array of types.
pub fn set_attr_type_list(
&mut self,
attr_name: &str,
value: &[DataType],
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
let c_value: Vec<tf::TF_DataType> = value.iter().map(|x| x.to_c()).collect();
unsafe {
tf::TF_SetAttrTypeList(
self.inner,
c_attr_name.as_ptr(),
c_value.as_ptr(),
c_value.len() as i32,
);
}
Ok(())
}
/// Sets a shape-valued attribute.
pub fn set_attr_shape(
&mut self,
attr_name: &str,
value: &Shape,
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
unsafe {
match value.0 {
None => tf::TF_SetAttrShape(self.inner, c_attr_name.as_ptr(), ptr::null(), -1),
Some(ref dims) => {
let c_dims: Vec<i64> = dims.iter().map(|x| (*x).unwrap_or(-1)).collect();
tf::TF_SetAttrShape(
self.inner,
c_attr_name.as_ptr(),
c_dims.as_ptr(),
c_dims.len() as i32,
);
}
}
}
Ok(())
}
/// Sets an attribute which holds an array of shapes.
pub fn set_attr_shape_list(
&mut self,
attr_name: &str,
value: &[Shape],
) -> std::result::Result<(), NulError> {
let c_attr_name = CString::new(attr_name)?;
// Convert Option<i64> in each shape to i64 with None becoming -1.
let c_dims: Vec<Option<Vec<i64>>> = value
.iter()
.map(|x| {
x.0.as_ref()
.map(|dims| dims.iter().map(|x| (*x).unwrap_or(-1)).collect())
})
.collect();
let ptrs: Vec<*const i64> = c_dims
.iter()
.map(|x| match *x {
None => ptr::null(),
Some(ref dims) => dims.as_ptr(),
})
.collect();
let lens: Vec<c_int> = value
.iter()
.map(|x| match x.0 {
None => -1,
Some(ref dims) => dims.len() as c_int,
})
.collect();
unsafe {
tf::TF_SetAttrShapeList(
self.inner,
c_attr_name.as_ptr(),
ptrs.as_ptr(),
lens.as_ptr(),
ptrs.len() as c_int,
);
}
Ok(())
}
/// Sets an attribute with a `TensorShapeProto` protobuf.
#[allow(trivial_numeric_casts)]
pub fn set_attr_tensor_shape_proto(&mut self, attr_name: &str, value: &[u8]) -> Result<()> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
tf::TF_SetAttrTensorShapeProto(
self.inner,
c_attr_name.as_ptr(),
value.as_ptr() as *const std_c_void,
value.len() as size_t,
status.inner(),
);
}
status.into_result()
}
/// Sets an attribute with an array of `TensorShapeProto` protobufs.
#[allow(trivial_numeric_casts)]
pub fn set_attr_tensor_shape_proto_list<T: AsRef<[u8]>>(
&mut self,
attr_name: &str,
value: &[T],
) -> Result<()> {
let c_attr_name = CString::new(attr_name)?;
let ptrs: Vec<*const c_void> = value
.iter()
.map(|x| x.as_ref().as_ptr() as *const c_void)
.collect();
let lens: Vec<size_t> = value.iter().map(|x| x.as_ref().len() as size_t).collect();
let mut status = Status::new();
unsafe {
tf::TF_SetAttrTensorShapeProtoList(
self.inner,
c_attr_name.as_ptr(),
ptrs.as_ptr() as *const *const std_c_void,
lens.as_ptr(),
ptrs.len() as c_int,
status.inner(),
);
}
status.into_result()
}
/// Sets a tensor-valued attribute.
pub fn set_attr_tensor<T: TensorType>(
&mut self,
attr_name: &str,
value: Tensor<T>,
) -> Result<()> {
self.set_attr_any_tensor(attr_name, &value)
}
/// Sets a tensor-valued attribute.
pub(crate) fn set_attr_any_tensor(
&mut self,
attr_name: &str,
value: &dyn AnyTensor,
) -> Result<()> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
tf::TF_SetAttrTensor(
self.inner,
c_attr_name.as_ptr(),
value.inner()?,
status.inner(),
);
}
status.into_result()
}
/// Sets an attribute which holds an array of tensors.
pub fn set_attr_tensor_list<I, T>(&mut self, attr_name: &str, value: I) -> Result<()>
where
I: IntoIterator<Item = Tensor<T>>,
T: TensorType,
{
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
// These have to stay alive durng the TF_SetAttrTensorList call.
let tensors: Vec<_> = value.into_iter().collect();
let maybe_ptrs: Result<_> = tensors.iter().map(|x| x.inner()).collect();
let ptrs: Vec<*mut tf::TF_Tensor> = maybe_ptrs?;
tf::TF_SetAttrTensorList(
self.inner,
c_attr_name.as_ptr(),
ptrs.as_ptr() as *const *mut tf::TF_Tensor,
ptrs.len() as c_int,
status.inner(),
);
}
status.into_result()
}
/// Sets an attribute with an `AttrValue` proto.
#[deprecated(since = "0.7.0", note = "Use set_attr_value_proto instead.")]
pub fn set_attr_to_attr_value_proto(&mut self, attr_name: &str, value: &[u8]) -> Result<()> {
self.set_attr_value_proto(attr_name, value)
}
/// Sets an attribute with an `AttrValue` proto.
#[allow(trivial_numeric_casts)]
pub fn set_attr_value_proto(&mut self, attr_name: &str, value: &[u8]) -> Result<()> {
let c_attr_name = CString::new(attr_name)?;
let mut status = Status::new();
unsafe {
tf::TF_SetAttrValueProto(
self.inner,
c_attr_name.as_ptr(),
value.as_ptr() as *const std_c_void,
// Allow trivial_numeric_casts because usize is not
// necessarily size_t.
value.len() as size_t,
status.inner(),
);
}
status.into_result()
}
}
////////////////////////
/// Options that can be passed during function creation.
#[derive(Debug)]
#[allow(missing_copy_implementations)]
pub struct FunctionOptions {
inner: *mut tf::TF_FunctionOptions,
}
impl Default for FunctionOptions {
fn default() -> Self {
Self::new()
}
}
impl FunctionOptions {
/// Creates a blank set of options.
pub fn new() -> Self {
FunctionOptions {
inner: ptr::null_mut(), // TODO: Use real options when they become available
}
}
}
////////////////////////
/// Function is a grouping of operations with defined inputs and outputs.
/// Once created and added to graphs, functions can be invoked by creating an
/// operation whose operation type matches the function name.
#[derive(Debug)]
pub struct Function {
inner: *mut tf::TF_Function,
}
impl_drop!(Function, TF_DeleteFunction);
impl Function {
/// Returns a serialized representation of the function (as a FunctionDef
/// protocol message).
///
/// May fail on very large graphs in the future.
pub fn to_function_def(&self) -> Result<Vec<u8>> {
let status = Status::new();
unsafe {
let mut buf = Buffer::from_ptr(ptr::null_mut(), 0);
tf::TF_FunctionToFunctionDef(self.inner, buf.inner_mut(), status.inner);
status.into_result()?;
Ok(buf.into())
}
}
/// Construct and return the function whose FunctionDef representation is
/// serialized in `proto`. Returns a newly created `Function` instance.
pub fn import_function_def(proto: &[u8]) -> Result<Function> {
let status = Status::new();
unsafe {
let inner = tf::TF_FunctionImportFunctionDef(
proto.as_ptr() as *const std_c_void,
proto.len(),
status.inner,
);
status.into_result()?;
Ok(Function { inner })
}
}
/// Sets function attribute named `attr_name` to value stored in `proto`. If
/// this attribute is already set to another value, it is overriden. `proto`
/// should be a sequence of bytes representing a binary serialization of an
/// AttrValue protocol buffer.
pub fn set_attr_value_proto(&mut self, attr_name: &str, proto: &[u8]) -> Result<()> {
let status = Status::new();
let attr_name_cstr = CString::new(attr_name)?;
unsafe {
tf::TF_FunctionSetAttrValueProto(
self.inner,
attr_name_cstr.as_ptr(),
proto.as_ptr() as *const std_c_void,
proto.len(),
status.inner,
);
}
status.into_result()
}
/// Returns the binary-serialized AttrValue proto representation of the
/// value of the `attr_name` attr of the function. If `attr_name` attribute
/// is not present, returns an error.
pub fn get_attr_value_proto(&self, attr_name: &str) -> Result<Vec<u8>> {
let status = Status::new();
let attr_name_cstr = CString::new(attr_name)?;
unsafe {
let mut buf = Buffer::from_ptr(ptr::null_mut(), 0);
tf::TF_FunctionGetAttrValueProto(
self.inner,
attr_name_cstr.as_ptr(),
buf.inner_mut(),
status.inner,
);
status.into_result()?;
Ok(buf.into())
}
}
/// Returns the name of the graph function.
pub fn get_name(&self) -> std::result::Result<String, Utf8Error> {
unsafe {
CStr::from_ptr(tf::TF_FunctionName(self.inner))
.to_str()
.map(|s| s.to_string())
}
}
}
////////////////////////
#[cfg(test)]
mod tests {
use super::super::DataType;
use super::super::Shape;
use super::*;
fn add_operation(g: &mut Graph) {
g.new_operation("Variable", "foo").unwrap();
}
fn add(g: &mut Graph, op1: Operation, op2: Operation, name: &str) -> Result<Operation> {
let mut nd = g.new_operation("Add", name)?;
nd.add_input(op1);
nd.add_input(op2);
nd.finish()
}
fn multiply(g: &mut Graph, op1: Operation, op2: Operation, name: &str) -> Result<Operation> {
let mut nd = g.new_operation("Mul", name)?;
nd.add_input(op1);
nd.add_input(op2);
nd.finish()
}
#[test]
fn smoke() {
let mut g = Graph::new();
add_operation(&mut g);
let operation = {
let mut nd = g.new_operation("Variable", "foo").unwrap();
nd.set_attr_type("dtype", DataType::Float).unwrap();
nd.set_attr_shape("shape", &Shape(Some(vec![]))).unwrap();
nd.finish().unwrap()
};
let mut nd2 = g.new_operation("Variable", "foo2").unwrap();
nd2.set_attr_type("dtype", DataType::Float).unwrap();
nd2.set_attr_shape("shape", &Shape(Some(vec![]))).unwrap();
let operation2 = nd2.finish().unwrap();
assert_eq!("foo", operation.name().unwrap());
assert_eq!("foo2", operation2.name().unwrap());
}
#[test]
fn test_import_graph_def() {
let mut g = Graph::new();
let opts = ImportGraphDefOptions::new();
// An empty array is a valid proto, since all fields are optional.
let status = g.import_graph_def(&[], &opts);
assert!(status.is_ok());
}
#[test]
fn test_get_tensor_shape() {
fn constant<T: TensorType>(graph: &mut Graph, name: &str, value: Tensor<T>) -> Operation {
let mut c = graph.new_operation("Const", name).unwrap();
c.set_attr_tensor("value", value).unwrap();
c.set_attr_type("dtype", T::data_type()).unwrap();
c.finish().unwrap()
}
let mut graph = Graph::new();
let x_init = Tensor::<i32>::new(&[3, 3]);
let x = constant(&mut graph, "x/assign_0", x_init);
assert_eq!(1, x.num_outputs());
assert_eq!(x.output_type(0), DataType::Int32);
let dims = graph.num_dims(x.clone()).unwrap();
assert_eq!(dims, 2);
let shape = graph.tensor_shape(x.clone()).unwrap();
assert_eq!(shape, Shape(Some(vec![Some(3_i64), Some(3_i64)])));
}
#[test]
fn graph_to_function() {
let mut g = Graph::new();
let x = {
let mut nd = g.new_operation("Placeholder", "x").unwrap();
nd.set_attr_type("dtype", DataType::Float).unwrap();
nd.set_attr_shape("shape", &Shape(Some(vec![]))).unwrap();
nd.finish().unwrap()
};
let two = {
let mut nd = g.new_operation("Const", "two").unwrap();
nd.set_attr_type("dtype", DataType::Float).unwrap();
let mut value = Tensor::new(&[1]);
value[0] = 2.0f32;
nd.set_attr_tensor("value", value).unwrap();
nd.finish().unwrap()
};
let y = multiply(&mut g, two.clone(), x.clone(), "y").unwrap();
let opers = vec![&y];
let inputs = vec![x.clone().into(), two.clone().into()];
let outputs = vec![y.clone().into()];
let output_names = vec!["result"];
let description = "Multiplies by 2";
let opts = FunctionOptions::new();
let f = g
.to_function(
"times_two",
false,
Some(&opers),
&inputs,
&outputs,
Some(&output_names),
&opts,
Some(description),
)
.unwrap();
assert_eq!("times_two", f.get_name().unwrap());
let mut g2 = Graph::new();
assert_eq!(0, g2.num_functions());
assert_eq!(0, g2.get_functions().unwrap().len());
g2.copy_function(&f, None).unwrap();
assert_eq!(1, g2.num_functions());
assert_eq!(1, g2.get_functions().unwrap().len());
}
// This test checks that Operation::get_attr_* returns the value passed in
// by OperationDescription::set_attr_*. It's long and tedious because we
// need to create several different ops to cover all the different types,
// and the ops have requirements that have to be set up, first. Once we can
// define our own ops, we may be able to just define a single op with
// attributes for all of the types.
#[test]
#[allow(trivial_casts)] // so we can do assert_eq!(slice, &some_vec as &[_])
fn operation_attributes() {
let mut g = Graph::new();
let shape = Shape(Some(vec![None, Some(3)]));
let variable_op = {
let mut nd = g.new_operation("Variable", "Variable").unwrap();
nd.set_attr_type("dtype", DataType::Int32).unwrap();
nd.set_attr_shape("shape", &shape).unwrap();
nd.set_attr_string("shared_name", "bar").unwrap();
nd.finish().unwrap()
};
assert_eq!("bar", variable_op.get_attr_string("shared_name").unwrap());
assert_eq!(DataType::Int32, variable_op.get_attr_type("dtype").unwrap());
assert_eq!(shape, variable_op.get_attr_shape("shape").unwrap());
let op = {
let mut nd = g
.new_operation("Variable", "Variable_unknown_rank")
.unwrap();
nd.set_attr_type("dtype", DataType::Int32).unwrap();
nd.set_attr_shape("shape", &Shape(None)).unwrap();
nd.finish().unwrap()
};
assert_eq!(Shape(None), op.get_attr_shape("shape").unwrap());
let value = Tensor::<i32>::new(&[1, 3]).with_values(&[1, 2, 3]).unwrap();
let const_op = {
let mut nd = g.new_operation("Const", "Const").unwrap();
nd.set_attr_tensor("value", value.clone()).unwrap();
nd.set_attr_type("dtype", DataType::Int32).unwrap();
nd.finish().unwrap()
};
assert_eq!(value, const_op.get_attr_tensor("value").unwrap());
let op = {
let mut nd = g.new_operation("Assign", "Assign").unwrap();
nd.add_input(variable_op.clone());
nd.add_input(variable_op.clone());
nd.set_attr_bool("validate_shape", true).unwrap();
nd.set_attr_bool("use_locking", false).unwrap();
nd.finish().unwrap()
};
assert_eq!(true, op.get_attr_bool("validate_shape").unwrap());
assert_eq!(false, op.get_attr_bool("use_locking").unwrap());
let op = {
let variable_op = {
let mut nd = g.new_operation("Variable", "MaxPool_in1").unwrap();
nd.set_attr_type("dtype", DataType::Int32).unwrap();
nd.set_attr_shape(
"shape",
&Shape(Some(vec![Some(5), Some(5), Some(5), Some(5)])),
)
.unwrap();
nd.finish().unwrap()
};
let mut nd = g.new_operation("MaxPool", "MaxPool").unwrap();
nd.add_input(variable_op);
nd.set_attr_int_list("ksize", &[1, 2, 3, 4]).unwrap();
nd.set_attr_int_list("strides", &[1, 1, 1, 1]).unwrap();
nd.set_attr_string("padding", "VALID").unwrap();
nd.finish().unwrap()
};
assert_eq!(
&[1, 2, 3, 4],
&op.get_attr_int_list("ksize").unwrap() as &[i64]
);
let op = {
let mut nd = g.new_operation("TensorSummary", "TensorSummary").unwrap();
nd.add_input(variable_op.clone());
nd.set_attr_string_list("labels", &["foo", "bar"]).unwrap();
nd.finish().unwrap()
};
assert_eq!(
&["foo".to_string(), "bar".to_string()],
&op.get_attr_string_list("labels").unwrap() as &[_]
);
let op = {
let mut nd = g
.new_operation("ApproximateEqual", "ApproximateEqual")
.unwrap();
nd.add_input(variable_op.clone());
nd.add_input(variable_op.clone());
nd.set_attr_float("tolerance", 3.14).unwrap();
nd.finish().unwrap()
};
assert_eq!(3.14, op.get_attr_float("tolerance").unwrap());
let op = {
let mut nd = g.new_operation("Bucketize", "Bucketize").unwrap();
nd.add_input(variable_op.clone());
nd.set_attr_float_list("boundaries", &[0.1, 2.3]).unwrap();
nd.finish().unwrap()
};
assert_eq!(
&[0.1f32, 2.3],
&op.get_attr_float_list("boundaries").unwrap() as &[_]
);
let shape_list = &[
Shape(None),
Shape(Some(vec![])),
Shape(Some(vec![None])),
Shape(Some(vec![Some(1)])),
];
let op = {
let mut nd = g
.new_operation("RandomShuffleQueue", "RandomShuffleQueue")
.unwrap();
nd.set_attr_shape_list("shapes", shape_list).unwrap();
nd.set_attr_type_list("component_types", &[DataType::Float, DataType::Int32])
.unwrap();
nd.set_attr_int("seed", 42).unwrap();
nd.finish().unwrap()
};
assert_eq!(
shape_list,
&op.get_attr_shape_list("shapes").unwrap() as &[_]
);
assert_eq!(
&[DataType::Float, DataType::Int32],
&op.get_attr_type_list("component_types").unwrap() as &[_]
);
assert_eq!(42, op.get_attr_int("seed").unwrap());
// TODO: Support get_attr_*/set_attr_*:
// - bool_list
// - tensor_list
// - tensor_shape_proto
// - tensor_shape_proto_list
// - value_proto
// - func_name
// The protos are tricky because we don't currently support proto
// serialization/deserialization, and bool_list and tensor_list (a.k.a.
// list(bool) and list(tensor)) don't seem to be used for any standard
// ops. TF_GetAttrFuncName doesn't exist yet.
}
// Returns a serialized GraphDef proto with variables "a" and "b" and op "a_times_b".
fn graph_def() -> Vec<u8> {
let mut g = Graph::new();
let a = {
let mut nd = g.new_operation("Variable", "a").unwrap();
nd.set_attr_type("dtype", DataType::Int32).unwrap();
nd.set_attr_shape("shape", &Shape(None)).unwrap();
nd.finish().unwrap()
};
let b = {
let mut nd = g.new_operation("Variable", "b").unwrap();
nd.set_attr_type("dtype", DataType::Int32).unwrap();
nd.set_attr_shape("shape", &Shape(None)).unwrap();
nd.finish().unwrap()
};
multiply(&mut g, a, b, "a_times_b").unwrap();
g.graph_def().unwrap()
}
#[test]
fn import_graph_def_uniquify_names() {
let mut g = Graph::new();
let mut opts = ImportGraphDefOptions::new();
g.import_graph_def(&graph_def(), &opts).unwrap();
opts.set_uniquify_names(true);
g.import_graph_def(&graph_def(), &opts).unwrap();
g.operation_by_name_required("a_1").unwrap();
}
#[test]
fn import_graph_def_uniquify_prefix() {
let mut g = Graph::new();
let mut opts = ImportGraphDefOptions::new();
opts.set_prefix("prefix").unwrap();
g.import_graph_def(&graph_def(), &opts).unwrap();
opts.set_uniquify_prefix(true);
g.import_graph_def(&graph_def(), &opts).unwrap();
g.operation_by_name_required("prefix_1/a").unwrap();
}
#[test]
fn import_graph_def_set_default_device() {
let mut g = Graph::new();
let mut opts = ImportGraphDefOptions::new();
opts.set_default_device("fake_device").unwrap();
g.import_graph_def(&graph_def(), &opts).unwrap();
assert_eq!(
g.operation_by_name_required("a").unwrap().device().unwrap(),
"fake_device"
);
}
#[test]
fn import_graph_def_results_return_outputs() {
let mut g = Graph::new();
let mut opts = ImportGraphDefOptions::new();
assert_eq!(opts.num_return_outputs(), 0);
opts.add_return_output("a_times_b", 0).unwrap();
assert_eq!(opts.num_return_outputs(), 1);
let result = g
.import_graph_def_with_results(&graph_def(), &opts)
.unwrap();
let ops = result.return_outputs();
assert_eq!(ops.len(), 1);
assert_eq!(ops[0].operation.name().unwrap(), "a_times_b");
assert_eq!(ops[0].index, 0);
}
#[test]
fn import_graph_def_results_return_operations() {
let mut g = Graph::new();
let mut opts = ImportGraphDefOptions::new();
assert_eq!(opts.num_return_operations(), 0);
opts.add_return_operation("a_times_b").unwrap();
assert_eq!(opts.num_return_operations(), 1);
let result = g
.import_graph_def_with_results(&graph_def(), &opts)
.unwrap();
let ops = result.return_operations();
assert_eq!(ops.len(), 1);
assert_eq!(ops[0].name().unwrap(), "a_times_b");
}
#[test]
fn import_graph_def_results_missing_unused_input_mappings() {
let mut g = Graph::new();
let op = {
let mut nd = g.new_operation("Variable", "foo").unwrap();
nd.set_attr_type("dtype", DataType::Int32).unwrap();
nd.set_attr_shape("shape", &Shape(None)).unwrap();
nd.finish().unwrap()
};
let output = op.into();
let mut opts = ImportGraphDefOptions::new();
opts.add_input_mapping("bar", 3, &output).unwrap();
// An empty array is a valid proto, since all fields are optional.
let result = g.import_graph_def_with_results(&[], &opts).unwrap();
let missing = result.missing_unused_input_mappings().unwrap();
assert_eq!(missing.len(), 1);
assert_eq!(missing[0].0, "bar");
assert_eq!(missing[0].1, 3);
}
#[test]
fn import_graph_def_with_return_outputs() {
let mut g = Graph::new();
let mut opts = ImportGraphDefOptions::new();
assert_eq!(opts.num_return_outputs(), 0);
opts.add_return_output("a_times_b", 0).unwrap();
assert_eq!(opts.num_return_outputs(), 1);
let ops = g
.import_graph_def_with_return_outputs(&graph_def(), &opts)
.unwrap();
assert_eq!(ops.len(), 1);
assert_eq!(ops[0].operation.name().unwrap(), "a_times_b");
assert_eq!(ops[0].index, 0);
}
#[test]
fn graph_get_op_def() {
let g = Graph::new();
// We don't want to compare the actual proto because it may change across releases.
assert!(g.get_op_def("Const").unwrap().len() > 0);
}
#[test]
fn graph_versions() {
let g = Graph::new();
// We don't want to compare the actual proto because it may change across releases.
assert!(g.versions().unwrap().len() > 0);
}
#[test]
fn graph_generate_operation_name() {
let mut g = Graph::new();
for i in 0..5 {
assert_eq!(i, g.generate_operation_name("foo_{}").unwrap());
let mut nd = g
.new_operation("Placeholder", &format!("foo_{}", i))
.unwrap();
nd.set_attr_type("dtype", DataType::Float).unwrap();
nd.set_attr_shape("shape", &Shape(Some(vec![]))).unwrap();
nd.finish().unwrap();
}
}
#[test]
fn graph_add_gradients() {
// TODO: Add an integration test to verify that the gradient behaves as expected.
for (prefix, expected_prefix) in &[
(Some("arbitrary_prefix"), "arbitrary_prefix/"),
(None, "gradients/"),
] {
let mut g = Graph::new();
let x = {
let mut nd = g.new_operation("Placeholder", "x").unwrap();
nd.set_attr_type("dtype", DataType::Float).unwrap();
nd.set_attr_shape("shape", &Shape(Some(vec![]))).unwrap();
nd.finish().unwrap()
};
let y = {
let mut nd = g.new_operation("Placeholder", "y").unwrap();
nd.set_attr_type("dtype", DataType::Float).unwrap();
nd.set_attr_shape("shape", &Shape(Some(vec![]))).unwrap();
nd.finish().unwrap()
};
let x_squared = multiply(&mut g, x.clone(), x.clone(), "x_squared").unwrap();
let x_times_y = multiply(&mut g, x.clone(), y.clone(), "x_times_y").unwrap();
let x_plus_y = add(&mut g, x.clone(), y.clone(), "x_plus_y").unwrap();
// y_outs and x_outs are intentionally different lengths, so we can test that the lengths line up properly.
let y_outs = vec![x_squared.into(), x_times_y.into(), x_plus_y.into()];
let x_outs = vec![x.into(), y.into()];
let dy = g.add_gradients(*prefix, &y_outs, &x_outs, None).unwrap();
assert_eq!(dy.len(), 2);
for d in dy {
let d = d.unwrap();
assert_eq!(d.index, 0);
let name = d.operation.name().unwrap();
assert!(
name.starts_with(expected_prefix),
"name = {}, expected prefix = {}",
name,
expected_prefix
);
}
}
}
#[test]
fn graph_add_gradients_stopped_gradient() {
// TODO: Add an integration test to verify that the gradient behaves as expected.
for prefix in &[Some("arbitrary_prefix"), None] {
let mut g = Graph::new();
let zero = {
let mut nd = g.new_operation("Const", "zero").unwrap();
nd.set_attr_type("dtype", DataType::Int32).unwrap();
nd.set_attr_tensor("value", Tensor::<i32>::from(0)).unwrap();
nd.finish().unwrap()
};
let x = {
let mut nd = g.new_operation("Placeholder", "x").unwrap();
nd.set_attr_type("dtype", DataType::Float).unwrap();
nd.set_attr_shape("shape", &Shape(Some(vec![]))).unwrap();
nd.finish().unwrap()
};
let argmax_x = {
let mut nd = g.new_operation("ArgMax", "argmax_x").unwrap();
nd.add_input(x.clone());
nd.add_input(zero);
nd.finish().unwrap()
};
let stopped_gradient = {
let mut nd = g.new_operation("StopGradient", "stopped").unwrap();
nd.add_input(argmax_x.clone());
nd.finish().unwrap()
};
let y_outs = vec![stopped_gradient.into()];
let x_outs = vec![x.into()];
let dy = g.add_gradients(*prefix, &y_outs, &x_outs, None).unwrap();
assert_eq!(dy.len(), 1);
for d in &dy {
assert!(d.is_none());
}
}
}
#[test]
fn graph_add_gradients_no_gradient() {
// TODO: Add an integration test to verify that the gradient behaves as expected.
for prefix in &[Some("arbitrary_prefix"), None] {
let mut g = Graph::new();
let zero = {
let mut nd = g.new_operation("Const", "zero").unwrap();
nd.set_attr_type("dtype", DataType::Int32).unwrap();
nd.set_attr_tensor("value", Tensor::<i32>::from(0)).unwrap();
nd.finish().unwrap()
};
let x = {
let mut nd = g.new_operation("Placeholder", "x").unwrap();
nd.set_attr_type("dtype", DataType::Float).unwrap();
nd.set_attr_shape("shape", &Shape(Some(vec![]))).unwrap();
nd.finish().unwrap()
};
let argmax_x = {
let mut nd = g.new_operation("ArgMax", "argmax_x").unwrap();
nd.add_input(x.clone());
nd.add_input(zero);
nd.finish().unwrap()
};
let y_outs = vec![argmax_x.into()];
let x_outs = vec![x.into()];
assert!(g.add_gradients(*prefix, &y_outs, &x_outs, None).is_err());
}
}
#[test]
fn output_consumers() {
let mut graph = Graph::new();
let x_op = {
let mut nd = graph.new_operation("Placeholder", "x").unwrap();
nd.set_attr_type("dtype", DataType::String).unwrap();
nd.set_attr_shape("shape", &Shape(Some(vec![]))).unwrap();
nd.finish().unwrap()
};
let _y_op = {
let mut nd = graph.new_operation("EncodeBase64", "y").unwrap();
nd.add_input(x_op.clone());
nd.finish().unwrap()
};
assert_eq!(x_op.num_outputs(), 1);
let consumers = x_op.output_consumers(0);
assert_eq!(consumers.len(), 1);
assert_eq!(consumers[0].0.name().unwrap(), "y");
assert_eq!(consumers[0].1, 0);
}
#[test]
fn output_name() {
assert_eq!(
"foo:1".parse::<OutputName>().unwrap(),
OutputName {
name: "foo".to_string(),
index: 1
}
);
assert_eq!(
OutputName {
name: "foo".to_string(),
index: 1
}
.to_string(),
"foo:1"
);
assert_eq!(
"foo".parse::<OutputName>().unwrap(),
OutputName {
name: "foo".to_string(),
index: 0
}
);
assert!("foo:bar".parse::<OutputName>().is_err());
assert!("foo:0:1".parse::<OutputName>().is_err());
}
#[test]
fn device() {
let mut graph = Graph::new();
let op = {
let mut nd = graph.new_operation("NoOp", "x").unwrap();
nd.set_device("foo").unwrap();
nd.finish().unwrap()
};
assert_eq!(op.device().unwrap(), "foo");
}
#[test]
fn control_inputs() {
let mut graph = Graph::new();
let x = graph.new_operation("NoOp", "x").unwrap().finish().unwrap();
let y = {
let mut nd = graph.new_operation("NoOp", "y").unwrap();
nd.add_control_input(&x);
nd.finish().unwrap()
};
assert_eq!(
y.control_inputs()
.iter()
.map(|n| n.name().unwrap())
.collect::<Vec<_>>(),
&["x"]
);
}
}