1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
use crate::Graph;
use crate::Operation;
use crate::OperationDescription;
use crate::Result;
use std::borrow::Borrow;
use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::collections::HashSet;
use std::ops::Deref;
use std::ops::DerefMut;
use std::rc::Rc;
/// Joins left and right using the separator. If either left or right is the
/// empty string, the separator is left out.
fn join(sep: &str, left: &str, right: &str) -> String {
match (left, right) {
("", _) => right.to_string(),
(_, "") => left.to_string(),
_ => format!("{}{}{}", left, sep, right),
}
}
// TODO: Include other with_* functions
/// A `Scope` object represents a set of related TensorFlow ops that have the
/// same properties such as a common name prefix.
///
/// A Scope object is a container for TensorFlow Op properties. Op constructors
/// get a Scope object as a mandatory first argument and the constructed op
/// acquires the properties in the object.
///
/// A simple example:
///
/// ```
/// # use tensorflow::Scope;
/// # use tensorflow::Tensor;
/// # use tensorflow::ops;
/// let mut root = Scope::new_root_scope();
/// let c1 = ops::constant(Tensor::new(&[1, 2]).with_values(&[1, 1])?, &mut root)?;
/// let c2 = ops::constant(Tensor::new(&[2, 1]).with_values(&[41, 1])?, &mut root)?;
/// let m = ops::mat_mul(c1, c2, &mut root)?;
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Scope hierarchy
///
/// The Scope class provides various `with_*` functions that create a new scope.
/// The new scope typically has one property changed while other properties are
/// inherited from the parent scope.
/// `new_sub_scope(name)` method appends `name` to the prefix of names for ops
/// created within the scope, and `with_op_name()` changes the suffix which
/// otherwise defaults to the type of the op.
///
/// Name examples:
///
/// ```
/// # use tensorflow::DataType;
/// # use tensorflow::Scope;
/// # use tensorflow::Shape;
/// # use tensorflow::Tensor;
/// # use tensorflow::Variable;
/// # use tensorflow::ops;
/// let mut root = Scope::new_root_scope();
/// let mut linear = root.new_sub_scope("linear");
/// let w = Variable::builder()
/// .const_initial_value(
/// Tensor::new(&[2, 2])
/// .with_values(&[0.0f32, 0.0, 0.0, 0.0])?)
/// .build(&mut linear.with_op_name("W"))?;
/// assert_eq!(w.name(), "linear/W");
/// let b = Variable::builder()
/// .const_initial_value(
/// Tensor::new(&[2])
/// .with_values(&[0.0f32, 0.0])?)
/// .build(&mut linear.with_op_name("b"))?;
/// assert_eq!(b.name(), "linear/b");
/// let x = ops::constant(
/// Tensor::new(&[2, 2])
/// .with_values(&[1.0f32, 2.0, 3.0, 4.0])?,
/// &mut linear)?;
/// assert_eq!(x.name()?, "linear/Const");
/// let m = ops::mat_mul(x, w.output().clone(), &mut linear)?;
/// assert_eq!(m.name()?, "linear/MatMul");
/// let r = ops::bias_add(m, b.output().clone(), &mut linear)?;
/// assert_eq!(r.name()?, "linear/BiasAdd");
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Scope lifetime
///
/// A new scope is created by calling `Scope::new_root_scope`. This creates some
/// resources that are shared by all the child scopes that inherit from this
/// scope, directly or transitively. For instance, a new scope creates a new
/// Graph object to which operations are added when the new scope or its
/// children are used by an Op constructor.
#[derive(Debug)]
pub struct Scope {
graph: Rc<RefCell<Graph>>,
name: String,
children_names: Rc<RefCell<HashSet<String>>>,
op_name: String,
op_names: Rc<RefCell<HashMap<String, i32>>>,
device: String,
control_deps: Vec<Operation>,
kernel_label: String,
xla_cluster: String,
}
impl Scope {
/// Return a new scope.
/// This creates a new graph and all operations constructed in this graph
/// should use the returned object as the "root" scope.
pub fn new_root_scope() -> Scope {
Scope {
graph: Rc::new(RefCell::new(Graph::new())),
name: "".to_string(),
children_names: Rc::new(RefCell::new(HashSet::new())),
op_name: "".to_string(),
op_names: Rc::new(RefCell::new(HashMap::new())),
device: "".to_string(),
control_deps: Vec::new(),
kernel_label: "".to_string(),
xla_cluster: "".to_string(),
}
}
/// Adds a suffix if necessary to create a unique subscope name.
fn uniquify(&self, name: &str) -> String {
let refcell: &RefCell<_> = self.children_names.borrow();
let mut set = refcell.borrow_mut();
if set.insert(name.to_string()) {
return name.to_string();
}
let mut i = 1;
loop {
let unique_name = format!("{}_{}", &name, i);
if set.insert(unique_name.clone()) {
return unique_name;
}
i += 1;
}
}
/// Return a new scope. Ops created with this scope will have
/// `name/child_scope_name` as the prefix. The actual name will be unique
/// in the current scope. All other properties are inherited from the current
/// scope. If `child_scope_name` is empty, the `/` is elided.
pub fn new_sub_scope(&self, name: &str) -> Scope {
let self_name: &str = &self.name;
let (new_name, copy_names) = match (self_name, name) {
(_, "") => (self.name.clone(), true),
("", _) => (self.uniquify(name), false),
_ => (format!("{}/{}", self.name, self.uniquify(name)), false),
};
Scope {
graph: self.graph.clone(),
name: new_name,
children_names: Rc::new(RefCell::new(HashSet::new())),
op_name: self.op_name.clone(),
op_names: if copy_names {
self.op_names.clone()
} else {
Rc::new(RefCell::new(HashMap::new()))
},
device: self.device.clone(),
control_deps: self.control_deps.clone(),
kernel_label: self.kernel_label.clone(),
xla_cluster: self.xla_cluster.clone(),
}
}
/// Return a new scope. All ops created within the returned scope will have
/// names of the form `scope_name/name[_suffix]`
pub fn with_op_name(&self, name: &str) -> Scope {
Scope {
graph: self.graph.clone(),
name: self.name.clone(),
children_names: self.children_names.clone(),
op_name: name.to_string(),
op_names: self.op_names.clone(),
device: self.device.clone(),
control_deps: self.control_deps.clone(),
kernel_label: self.kernel_label.clone(),
xla_cluster: self.xla_cluster.clone(),
}
}
/// Return a unique name, using default_name if an op name has not been
/// specified.
pub fn get_unique_name_for_op(&self, default_name: &str) -> String {
let name = if self.op_name.is_empty() {
default_name
} else {
&self.op_name
};
let map: &RefCell<_> = self.op_names.borrow();
let mut map = map.borrow_mut();
let mut name_string = name.to_string();
loop {
match map.entry(name_string.clone()) {
Entry::Vacant(e) => {
e.insert(0);
return join("/", &self.name, &name_string);
}
Entry::Occupied(mut e) => {
*e.get_mut() += 1;
name_string = format!("{}_{}", name, *e.get());
}
}
}
}
/// Return a new scope. All ops created within the returned scope will have
/// their device field set to `device`.
pub fn with_device(&self, device: &str) -> Scope {
Scope {
graph: self.graph.clone(),
name: self.name.clone(),
children_names: self.children_names.clone(),
op_name: self.op_name.clone(),
op_names: self.op_names.clone(),
device: device.to_string(),
control_deps: self.control_deps.clone(),
kernel_label: self.kernel_label.clone(),
xla_cluster: self.xla_cluster.clone(),
}
}
/// Return a new scope. All ops created within the returned scope will have
/// as control dependencies the union of operations in `control_deps`
/// and the control dependencies of the current scope.
pub fn with_control_dependencies(&self, control_deps: &[Operation]) -> Scope {
Scope {
graph: self.graph.clone(),
name: self.name.clone(),
children_names: self.children_names.clone(),
op_name: self.op_name.clone(),
op_names: self.op_names.clone(),
device: self.device.clone(),
control_deps: self
.control_deps
.iter()
.chain(control_deps.iter())
.cloned()
.collect(),
kernel_label: self.kernel_label.clone(),
xla_cluster: self.xla_cluster.clone(),
}
}
/// Return a new scope. All ops created within the returned scope will have
/// no control dependencies on other operations.
pub fn with_no_control_dependencies(&self) -> Scope {
Scope {
graph: self.graph.clone(),
name: self.name.clone(),
children_names: self.children_names.clone(),
op_name: self.op_name.clone(),
op_names: self.op_names.clone(),
device: self.device.clone(),
control_deps: vec![],
kernel_label: self.kernel_label.clone(),
xla_cluster: self.xla_cluster.clone(),
}
}
/// Return a new scope. All ops created with the new scope will have
/// kernel_label as the value for their '_kernel' attribute.
pub fn with_kernel_label(&self, kernel_label: &str) -> Scope {
Scope {
graph: self.graph.clone(),
name: self.name.clone(),
children_names: self.children_names.clone(),
op_name: self.op_name.clone(),
op_names: self.op_names.clone(),
device: self.device.clone(),
control_deps: self.control_deps.clone(),
kernel_label: kernel_label.to_string(),
xla_cluster: self.xla_cluster.clone(),
}
}
/// Returns a new scope. All ops created within the returned scope will have
/// their '_XlaCluster' attribute set to xla_cluster.
pub fn with_xla_cluster(&self, xla_cluster: &str) -> Scope {
Scope {
graph: self.graph.clone(),
name: self.name.clone(),
children_names: self.children_names.clone(),
op_name: self.op_name.clone(),
op_names: self.op_names.clone(),
device: self.device.clone(),
control_deps: self.control_deps.clone(),
kernel_label: self.kernel_label.clone(),
xla_cluster: xla_cluster.to_string(),
}
}
pub(crate) fn new_operation<F: FnOnce(&mut OperationDescription) -> Result<()>>(
&mut self,
op_type: &str,
f: F,
) -> Result<Operation> {
let name = self.get_unique_name_for_op(op_type);
let r: &RefCell<Graph> = self.graph.borrow();
let mut graph = r.borrow_mut();
let mut nd = graph.new_operation(op_type, &name)?;
nd.set_device(&self.device)?;
for control_dep in &self.control_deps {
nd.add_control_input(control_dep);
}
if !self.kernel_label.is_empty() {
nd.set_attr_string("_kernel", &self.kernel_label)?;
}
if !self.xla_cluster.is_empty() {
nd.set_attr_string("_XlaCluster", &self.xla_cluster)?;
}
f(&mut nd)?;
nd.finish()
}
/// Returns the graph being built by the scope.
pub fn graph(&self) -> impl Deref<Target = Graph> + '_ {
let r: &RefCell<Graph> = self.graph.borrow();
r.borrow()
}
/// Returns the graph being built by the scope.
pub fn graph_mut(&mut self) -> impl DerefMut<Target = Graph> + '_ {
let r: &RefCell<Graph> = self.graph.borrow();
r.borrow_mut()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::DataType;
#[test]
fn smoke() {
let mut scope = Scope::new_root_scope();
let mut graph = scope.graph_mut();
let mut c = graph.new_operation("Const", "Const").unwrap();
c.set_attr_tensor("value", 3.0f32.into()).unwrap();
c.set_attr_type("dtype", DataType::Float).unwrap();
c.finish().unwrap();
}
#[test]
fn uniquification() {
let scope = Scope::new_root_scope();
assert_eq!(&scope.new_sub_scope("foo").name, "foo");
assert_eq!(&scope.new_sub_scope("foo").name, "foo_1");
let foo_1 = scope.new_sub_scope("foo");
assert_eq!(&foo_1.name, "foo_2");
assert_eq!(&foo_1.new_sub_scope("bar").name, "foo_2/bar");
assert_eq!(&foo_1.new_sub_scope("bar").name, "foo_2/bar_1");
assert_eq!(&foo_1.new_sub_scope("bar").name, "foo_2/bar_2");
}
#[test]
fn get_unique_name_for_op() {
let scope = Scope::new_root_scope();
assert_eq!(scope.get_unique_name_for_op("Add"), "Add");
assert_eq!(scope.get_unique_name_for_op("Add"), "Add_1");
let foo = scope.new_sub_scope("foo");
assert_eq!(foo.get_unique_name_for_op("Add"), "foo/Add");
assert_eq!(foo.get_unique_name_for_op("Add"), "foo/Add_1");
let bar = foo.with_op_name("bar");
assert_eq!(bar.get_unique_name_for_op("Add"), "foo/bar");
assert_eq!(bar.get_unique_name_for_op("Add"), "foo/bar_1");
}
#[test]
fn device() {
assert_eq!(
Scope::new_root_scope()
.with_device("foo")
.new_operation("NoOp", |_| Ok(()))
.unwrap()
.device()
.unwrap(),
"foo"
);
}
#[test]
fn kernel_label() {
assert_eq!(
Scope::new_root_scope()
.with_kernel_label("foo")
.new_operation("NoOp", |_| Ok(()))
.unwrap()
.get_attr_string("_kernel")
.unwrap(),
"foo"
);
}
#[test]
fn xla_cluster() {
assert_eq!(
Scope::new_root_scope()
.with_xla_cluster("foo")
.new_operation("NoOp", |_| Ok(()))
.unwrap()
.get_attr_string("_XlaCluster")
.unwrap(),
"foo"
);
}
#[test]
fn control_dependencies() {
let mut scope = Scope::new_root_scope();
let dep = scope.new_operation("NoOp", |_| Ok(())).unwrap();
let dep_clone = dep.clone();
let mut scope2 = scope.with_control_dependencies(&[dep]);
assert_eq!(
scope2
.new_operation("NoOp", |_| Ok(()))
.unwrap()
.control_inputs()
.iter()
.map(|n| n.name().unwrap())
.collect::<Vec<_>>(),
vec![dep_clone.name().unwrap()]
);
let mut scope3 = scope2.with_no_control_dependencies();
assert_eq!(
scope3
.new_operation("NoOp", |_| Ok(()))
.unwrap()
.control_inputs()
.len(),
0
);
}
}