Class ParseExampleDataset
java.lang.Object
org.tensorflow.op.RawOp
org.tensorflow.op.data.experimental.ParseExampleDataset
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic classstatic classOptional attributes forParseExampleDataset -
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final StringThe name of this op, as known by TensorFlow core engine -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionasOutput()Returns the symbolic handle of the tensor.static ParseExampleDatasetcreate(Scope scope, Operand<? extends TType> inputDataset, Operand<TInt64> numParallelCalls, Iterable<Operand<?>> denseDefaults, List<String> sparseKeys, List<String> denseKeys, List<Class<? extends TType>> sparseTypes, List<Shape> denseShapes, List<Class<? extends TType>> outputTypes, List<Shape> outputShapes, ParseExampleDataset.Options... options) Factory method to create a class wrapping a new ExperimentalParseExampleDataset operation.handle()Gets handle.static ParseExampleDataset.OptionsSets the sloppy option.
-
Field Details
-
OP_NAME
The name of this op, as known by TensorFlow core engine- See Also:
-
-
Constructor Details
-
ParseExampleDataset
-
-
Method Details
-
create
@Endpoint(describeByClass=true) public static ParseExampleDataset create(Scope scope, Operand<? extends TType> inputDataset, Operand<TInt64> numParallelCalls, Iterable<Operand<?>> denseDefaults, List<String> sparseKeys, List<String> denseKeys, List<Class<? extends TType>> sparseTypes, List<Shape> denseShapes, List<Class<? extends TType>> outputTypes, List<Shape> outputShapes, ParseExampleDataset.Options... options) Factory method to create a class wrapping a new ExperimentalParseExampleDataset operation.- Parameters:
scope- current scopeinputDataset- The inputDataset valuenumParallelCalls- The numParallelCalls valuedenseDefaults- A dict mapping string keys toTensors. The keys of the dict must match the dense_keys of the feature.sparseKeys- A list of string keys in the examples features. The results for these keys will be returned asSparseTensorobjects.denseKeys- A list of Ndense string Tensors (scalars). The keys expected in the Examples features associated with dense values.sparseTypes- A list ofDTypesof the same length assparse_keys. Onlytf.float32(FloatList),tf.int64(Int64List), andtf.string(BytesList) are supported.denseShapes- List of tuples with the same length asdense_keys. The shape of the data for each dense feature referenced bydense_keys. Required for any input tensors identified bydense_keys. Must be either fully defined, or may contain an unknown first dimension. An unknown first dimension means the feature is treated as having a variable number of blocks, and the output shape along this dimension is considered unknown at graph build time. Padding is applied for minibatch elements smaller than the maximum number of blocks for the given feature along this dimension.outputTypes- The type list for the return values.outputShapes- The list of shapes being produced.options- carries optional attribute values- Returns:
- a new instance of ParseExampleDataset
-
sloppy
Sets the sloppy option.- Parameters:
sloppy- the sloppy option- Returns:
- this Options instance.
-
handle
-
asOutput
Description copied from interface:OperandReturns the symbolic handle of the tensor.Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
-