Class ParseExampleDataset

java.lang.Object
org.tensorflow.op.RawOp
org.tensorflow.op.data.experimental.ParseExampleDataset
All Implemented Interfaces:
Shaped, Op, Operand<TType>

@Operator(group="data.experimental") public final class ParseExampleDataset extends RawOp implements Operand<TType>
Transforms input_dataset containing Example protos as vectors of DT_STRING into a dataset of Tensor or SparseTensor objects representing the parsed features.
  • Field Details

  • Constructor Details

    • ParseExampleDataset

      public ParseExampleDataset(Operation operation)
  • Method Details

    • create

      @Endpoint(describeByClass=true) public static ParseExampleDataset create(Scope scope, Operand<? extends TType> inputDataset, Operand<TInt64> numParallelCalls, Iterable<Operand<?>> denseDefaults, List<String> sparseKeys, List<String> denseKeys, List<Class<? extends TType>> sparseTypes, List<Shape> denseShapes, List<Class<? extends TType>> outputTypes, List<Shape> outputShapes, ParseExampleDataset.Options... options)
      Factory method to create a class wrapping a new ExperimentalParseExampleDataset operation.
      Parameters:
      scope - current scope
      inputDataset - The inputDataset value
      numParallelCalls - The numParallelCalls value
      denseDefaults - A dict mapping string keys to Tensors. The keys of the dict must match the dense_keys of the feature.
      sparseKeys - A list of string keys in the examples features. The results for these keys will be returned as SparseTensor objects.
      denseKeys - A list of Ndense string Tensors (scalars). The keys expected in the Examples features associated with dense values.
      sparseTypes - A list of DTypes of the same length as sparse_keys. Only tf.float32 (FloatList), tf.int64 (Int64List), and tf.string (BytesList) are supported.
      denseShapes - List of tuples with the same length as dense_keys. The shape of the data for each dense feature referenced by dense_keys. Required for any input tensors identified by dense_keys. Must be either fully defined, or may contain an unknown first dimension. An unknown first dimension means the feature is treated as having a variable number of blocks, and the output shape along this dimension is considered unknown at graph build time. Padding is applied for minibatch elements smaller than the maximum number of blocks for the given feature along this dimension.
      outputTypes - The type list for the return values.
      outputShapes - The list of shapes being produced.
      options - carries optional attribute values
      Returns:
      a new instance of ParseExampleDataset
    • sloppy

      public static ParseExampleDataset.Options sloppy(Boolean sloppy)
      Sets the sloppy option.
      Parameters:
      sloppy - the sloppy option
      Returns:
      this Options instance.
    • handle

      public Output<? extends TType> handle()
      Gets handle.
      Returns:
      handle.
    • asOutput

      public Output<TType> asOutput()
      Description copied from interface: Operand
      Returns the symbolic handle of the tensor.

      Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

      Specified by:
      asOutput in interface Operand<TType>
      See Also: