Class NonMaxSuppression.Inputs<T extends TNumber>

java.lang.Object
org.tensorflow.op.RawOpInputs<NonMaxSuppression<T>>
org.tensorflow.op.image.NonMaxSuppression.Inputs<T>
Enclosing class:
NonMaxSuppression<T extends TNumber>

public static class NonMaxSuppression.Inputs<T extends TNumber> extends RawOpInputs<NonMaxSuppression<T>>
  • Field Details

    • boxes

      public final Operand<T extends TNumber> boxes
      A 2-D float tensor of shape [num_boxes, 4].
    • scores

      public final Operand<T extends TNumber> scores
      A 1-D float tensor of shape [num_boxes] representing a single score corresponding to each box (each row of boxes).
    • maxOutputSize

      public final Operand<TInt32> maxOutputSize
      A scalar integer tensor representing the maximum number of boxes to be selected by non max suppression.
    • iouThreshold

      public final Operand<T extends TNumber> iouThreshold
      A 0-D float tensor representing the threshold for deciding whether boxes overlap too much with respect to IOU.
    • scoreThreshold

      public final Operand<T extends TNumber> scoreThreshold
      A 0-D float tensor representing the threshold for deciding when to remove boxes based on score.
    • softNmsSigma

      public final Operand<T extends TNumber> softNmsSigma
      A 0-D float tensor representing the sigma parameter for Soft NMS; see Bodla et al (c.f. https://arxiv.org/abs/1704.04503). When soft_nms_sigma=0.0 (which is default), we fall back to standard (hard) NMS.
    • T

      public final DataType T
      The T attribute
    • padToMaxOutputSize

      public final boolean padToMaxOutputSize
      If true, the output selected_indices is padded to be of length max_output_size. Defaults to false.
  • Constructor Details