Class BatchNormWithGlobalNormalizationGrad<T extends TType>

java.lang.Object
org.tensorflow.op.RawOp
org.tensorflow.op.nn.BatchNormWithGlobalNormalizationGrad<T>
All Implemented Interfaces:
Op

@Operator(group="nn") public final class BatchNormWithGlobalNormalizationGrad<T extends TType> extends RawOp
Gradients for batch normalization. This op is deprecated. See tf.nn.batch_normalization.
  • Field Details

  • Constructor Details

    • BatchNormWithGlobalNormalizationGrad

      public BatchNormWithGlobalNormalizationGrad(Operation operation)
  • Method Details

    • create

      @Endpoint(describeByClass=true) public static <T extends TType> BatchNormWithGlobalNormalizationGrad<T> create(Scope scope, Operand<T> t, Operand<T> m, Operand<T> v, Operand<T> gamma, Operand<T> backprop, Float varianceEpsilon, Boolean scaleAfterNormalization)
      Factory method to create a class wrapping a new BatchNormWithGlobalNormalizationGrad operation.
      Type Parameters:
      T - data type for BatchNormWithGlobalNormalizationGrad output and operands
      Parameters:
      scope - current scope
      t - A 4D input Tensor.
      m - A 1D mean Tensor with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof.
      v - A 1D variance Tensor with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof.
      gamma - A 1D gamma Tensor with size matching the last dimension of t. If "scale_after_normalization" is true, this Tensor will be multiplied with the normalized Tensor.
      backprop - 4D backprop Tensor.
      varianceEpsilon - A small float number to avoid dividing by 0.
      scaleAfterNormalization - A bool indicating whether the resulted tensor needs to be multiplied with gamma.
      Returns:
      a new instance of BatchNormWithGlobalNormalizationGrad
    • dx

      public Output<T> dx()
      Gets dx. 4D backprop tensor for input.
      Returns:
      dx.
    • dm

      public Output<T> dm()
      Gets dm. 1D backprop tensor for mean.
      Returns:
      dm.
    • dv

      public Output<T> dv()
      Gets dv. 1D backprop tensor for variance.
      Returns:
      dv.
    • db

      public Output<T> db()
      Gets db. 1D backprop tensor for beta.
      Returns:
      db.
    • dg

      public Output<T> dg()
      Gets dg. 1D backprop tensor for gamma.
      Returns:
      dg.