Class BatchNormWithGlobalNormalizationGrad<T extends TType>
java.lang.Object
org.tensorflow.op.RawOp
org.tensorflow.op.nn.BatchNormWithGlobalNormalizationGrad<T>
- All Implemented Interfaces:
Op
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic class -
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final StringThe name of this op, as known by TensorFlow core engine -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionstatic <T extends TType>
BatchNormWithGlobalNormalizationGrad<T> create(Scope scope, Operand<T> t, Operand<T> m, Operand<T> v, Operand<T> gamma, Operand<T> backprop, Float varianceEpsilon, Boolean scaleAfterNormalization) Factory method to create a class wrapping a new BatchNormWithGlobalNormalizationGrad operation.db()Gets db. 1D backprop tensor for beta.dg()Gets dg. 1D backprop tensor for gamma.dm()Gets dm. 1D backprop tensor for mean.dv()Gets dv. 1D backprop tensor for variance.dx()Gets dx. 4D backprop tensor for input.
-
Field Details
-
OP_NAME
The name of this op, as known by TensorFlow core engine- See Also:
-
-
Constructor Details
-
BatchNormWithGlobalNormalizationGrad
-
-
Method Details
-
create
@Endpoint(describeByClass=true) public static <T extends TType> BatchNormWithGlobalNormalizationGrad<T> create(Scope scope, Operand<T> t, Operand<T> m, Operand<T> v, Operand<T> gamma, Operand<T> backprop, Float varianceEpsilon, Boolean scaleAfterNormalization) Factory method to create a class wrapping a new BatchNormWithGlobalNormalizationGrad operation.- Type Parameters:
T- data type forBatchNormWithGlobalNormalizationGradoutput and operands- Parameters:
scope- current scopet- A 4D input Tensor.m- A 1D mean Tensor with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof.v- A 1D variance Tensor with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof.gamma- A 1D gamma Tensor with size matching the last dimension of t. If "scale_after_normalization" is true, this Tensor will be multiplied with the normalized Tensor.backprop- 4D backprop Tensor.varianceEpsilon- A small float number to avoid dividing by 0.scaleAfterNormalization- A bool indicating whether the resulted tensor needs to be multiplied with gamma.- Returns:
- a new instance of BatchNormWithGlobalNormalizationGrad
-
dx
-
dm
-
dv
-
db
-
dg
-