Class BiasAddGrad<T extends TType>

java.lang.Object
org.tensorflow.op.RawOp
org.tensorflow.op.nn.BiasAddGrad<T>
All Implemented Interfaces:
Shaped, Op, Operand<T>

@Operator(group="nn") public final class BiasAddGrad<T extends TType> extends RawOp implements Operand<T>
The backward operation for "BiasAdd" on the "bias" tensor. It accumulates all the values from out_backprop into the feature dimension. For NHWC data format, the feature dimension is the last. For NCHW data format, the feature dimension is the third-to-last.
  • Field Details

  • Constructor Details

    • BiasAddGrad

      public BiasAddGrad(Operation operation)
  • Method Details

    • create

      @Endpoint(describeByClass=true) public static <T extends TType> BiasAddGrad<T> create(Scope scope, Operand<T> outBackprop, BiasAddGrad.Options... options)
      Factory method to create a class wrapping a new BiasAddGrad operation.
      Type Parameters:
      T - data type for BiasAddGrad output and operands
      Parameters:
      scope - current scope
      outBackprop - Any number of dimensions.
      options - carries optional attribute values
      Returns:
      a new instance of BiasAddGrad
    • dataFormat

      public static BiasAddGrad.Options dataFormat(String dataFormat)
      Sets the dataFormat option.
      Parameters:
      dataFormat - Specify the data format of the input and output data. With the default format "NHWC", the bias tensor will be added to the last dimension of the value tensor. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. The tensor will be added to "in_channels", the third-to-the-last dimension.
      Returns:
      this Options instance.
    • output

      public Output<T> output()
      Gets output. 1-D with size the feature dimension of out_backprop.
      Returns:
      output.
    • asOutput

      public Output<T> asOutput()
      Description copied from interface: Operand
      Returns the symbolic handle of the tensor.

      Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

      Specified by:
      asOutput in interface Operand<T extends TType>
      See Also: