Class QuantizedBatchNormWithGlobalNormalization<U extends TNumber>
java.lang.Object
org.tensorflow.op.RawOp
org.tensorflow.op.nn.QuantizedBatchNormWithGlobalNormalization<U>
- All Implemented Interfaces:
Op
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic class -
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final StringThe name of this op, as known by TensorFlow core engine -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionstatic <U extends TNumber, T extends TNumber>
QuantizedBatchNormWithGlobalNormalization<U> create(Scope scope, Operand<T> t, Operand<TFloat32> tMin, Operand<TFloat32> tMax, Operand<T> m, Operand<TFloat32> mMin, Operand<TFloat32> mMax, Operand<T> v, Operand<TFloat32> vMin, Operand<TFloat32> vMax, Operand<T> beta, Operand<TFloat32> betaMin, Operand<TFloat32> betaMax, Operand<T> gamma, Operand<TFloat32> gammaMin, Operand<TFloat32> gammaMax, Class<U> outType, Float varianceEpsilon, Boolean scaleAfterNormalization) Factory method to create a class wrapping a new QuantizedBatchNormWithGlobalNormalization operation.result()Gets result.Gets resultMax.Gets resultMin.
-
Field Details
-
OP_NAME
The name of this op, as known by TensorFlow core engine- See Also:
-
-
Constructor Details
-
QuantizedBatchNormWithGlobalNormalization
-
-
Method Details
-
create
@Endpoint(describeByClass=true) public static <U extends TNumber, T extends TNumber> QuantizedBatchNormWithGlobalNormalization<U> create(Scope scope, Operand<T> t, Operand<TFloat32> tMin, Operand<TFloat32> tMax, Operand<T> m, Operand<TFloat32> mMin, Operand<TFloat32> mMax, Operand<T> v, Operand<TFloat32> vMin, Operand<TFloat32> vMax, Operand<T> beta, Operand<TFloat32> betaMin, Operand<TFloat32> betaMax, Operand<T> gamma, Operand<TFloat32> gammaMin, Operand<TFloat32> gammaMax, Class<U> outType, Float varianceEpsilon, Boolean scaleAfterNormalization) Factory method to create a class wrapping a new QuantizedBatchNormWithGlobalNormalization operation.- Type Parameters:
U- data type forQuantizedBatchNormWithGlobalNormalizationoutput and operandsT- data type forQuantizedBatchNormWithGlobalNormalizationoutput and operands- Parameters:
scope- current scopet- A 4D input Tensor.tMin- The value represented by the lowest quantized input.tMax- The value represented by the highest quantized input.m- A 1D mean Tensor with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof.mMin- The value represented by the lowest quantized mean.mMax- The value represented by the highest quantized mean.v- A 1D variance Tensor with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof.vMin- The value represented by the lowest quantized variance.vMax- The value represented by the highest quantized variance.beta- A 1D beta Tensor with size matching the last dimension of t. An offset to be added to the normalized tensor.betaMin- The value represented by the lowest quantized offset.betaMax- The value represented by the highest quantized offset.gamma- A 1D gamma Tensor with size matching the last dimension of t. If "scale_after_normalization" is true, this tensor will be multiplied with the normalized tensor.gammaMin- The value represented by the lowest quantized gamma.gammaMax- The value represented by the highest quantized gamma.outType- The value of the outType attributevarianceEpsilon- A small float number to avoid dividing by 0.scaleAfterNormalization- A bool indicating whether the resulted tensor needs to be multiplied with gamma.- Returns:
- a new instance of QuantizedBatchNormWithGlobalNormalization
-
result
-
resultMin
-
resultMax
-