Class QuantizedBatchNormWithGlobalNormalization<U extends TNumber>

java.lang.Object
org.tensorflow.op.RawOp
org.tensorflow.op.nn.QuantizedBatchNormWithGlobalNormalization<U>
All Implemented Interfaces:
Op

@Operator(group="nn") public final class QuantizedBatchNormWithGlobalNormalization<U extends TNumber> extends RawOp
Quantized Batch normalization. This op is deprecated and will be removed in the future. Prefer tf.nn.batch_normalization.
  • Field Details

  • Constructor Details

    • QuantizedBatchNormWithGlobalNormalization

      public QuantizedBatchNormWithGlobalNormalization(Operation operation)
  • Method Details

    • create

      @Endpoint(describeByClass=true) public static <U extends TNumber, T extends TNumber> QuantizedBatchNormWithGlobalNormalization<U> create(Scope scope, Operand<T> t, Operand<TFloat32> tMin, Operand<TFloat32> tMax, Operand<T> m, Operand<TFloat32> mMin, Operand<TFloat32> mMax, Operand<T> v, Operand<TFloat32> vMin, Operand<TFloat32> vMax, Operand<T> beta, Operand<TFloat32> betaMin, Operand<TFloat32> betaMax, Operand<T> gamma, Operand<TFloat32> gammaMin, Operand<TFloat32> gammaMax, Class<U> outType, Float varianceEpsilon, Boolean scaleAfterNormalization)
      Factory method to create a class wrapping a new QuantizedBatchNormWithGlobalNormalization operation.
      Type Parameters:
      U - data type for QuantizedBatchNormWithGlobalNormalization output and operands
      T - data type for QuantizedBatchNormWithGlobalNormalization output and operands
      Parameters:
      scope - current scope
      t - A 4D input Tensor.
      tMin - The value represented by the lowest quantized input.
      tMax - The value represented by the highest quantized input.
      m - A 1D mean Tensor with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof.
      mMin - The value represented by the lowest quantized mean.
      mMax - The value represented by the highest quantized mean.
      v - A 1D variance Tensor with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof.
      vMin - The value represented by the lowest quantized variance.
      vMax - The value represented by the highest quantized variance.
      beta - A 1D beta Tensor with size matching the last dimension of t. An offset to be added to the normalized tensor.
      betaMin - The value represented by the lowest quantized offset.
      betaMax - The value represented by the highest quantized offset.
      gamma - A 1D gamma Tensor with size matching the last dimension of t. If "scale_after_normalization" is true, this tensor will be multiplied with the normalized tensor.
      gammaMin - The value represented by the lowest quantized gamma.
      gammaMax - The value represented by the highest quantized gamma.
      outType - The value of the outType attribute
      varianceEpsilon - A small float number to avoid dividing by 0.
      scaleAfterNormalization - A bool indicating whether the resulted tensor needs to be multiplied with gamma.
      Returns:
      a new instance of QuantizedBatchNormWithGlobalNormalization
    • result

      public Output<U> result()
      Gets result.
      Returns:
      result.
    • resultMin

      public Output<TFloat32> resultMin()
      Gets resultMin.
      Returns:
      resultMin.
    • resultMax

      public Output<TFloat32> resultMax()
      Gets resultMax.
      Returns:
      resultMax.