Class EnqueueTPUEmbeddingArbitraryTensorBatch.Inputs
java.lang.Object
org.tensorflow.op.RawOpInputs<EnqueueTPUEmbeddingArbitraryTensorBatch>
org.tensorflow.op.tpu.EnqueueTPUEmbeddingArbitraryTensorBatch.Inputs
- Enclosing class:
EnqueueTPUEmbeddingArbitraryTensorBatch
public static class EnqueueTPUEmbeddingArbitraryTensorBatch.Inputs
extends RawOpInputs<EnqueueTPUEmbeddingArbitraryTensorBatch>
-
Field Summary
FieldsModifier and TypeFieldDescriptionA list of rank 1 Tensors containing per training example aggregation weights.final String[]A list of string scalars, one for each embedding table that specify how to normalize the embedding activations after weighted summation.final longThe TPU device to use.A list of rank 1 Tensors, indices into the embedding tables.A string input that overrides the mode specified in the TPUEmbeddingConfiguration.A list of rank 2 Tensors specifying the training example to which the corresponding embedding_indices and aggregation_weights values belong.final DataTypeThe T1 attributefinal DataTypeThe T2 attributefinal DataTypeThe T3 attribute -
Constructor Summary
Constructors -
Method Summary
Methods inherited from class RawOpInputs
attributeMetadata, attributeNames, attributes, attributeValue, attributeValues, equals, getOutputs, hashCode, toString
-
Field Details
-
sampleIndicesOrRowSplits
A list of rank 2 Tensors specifying the training example to which the corresponding embedding_indices and aggregation_weights values belong. If the size of its first dimension is 0, we assume each embedding_indices belongs to a different sample. Both int32 and int64 are allowed and will be converted to int32 internally.Or a list of rank 1 Tensors specifying the row splits for splitting embedding_indices and aggregation_weights into rows. It corresponds to ids.row_splits in embedding_lookup(), when ids is a RaggedTensor. When enqueuing N-D ragged tensor, only the last dimension is allowed to be ragged. the row splits is 1-D dense tensor. When empty, we assume a dense tensor is passed to the op Both int32 and int64 are allowed and will be converted to int32 internally.
-
embeddingIndices
-
aggregationWeights
-
modeOverride
A string input that overrides the mode specified in the TPUEmbeddingConfiguration. Supported values are {'unspecified', 'inference', 'training', 'backward_pass_only'}. When set to 'unspecified', the mode set in TPUEmbeddingConfiguration is used, otherwise mode_override is used. -
T1
The T1 attribute -
T2
The T2 attribute -
T3
The T3 attribute -
deviceOrdinal
public final long deviceOrdinalThe TPU device to use. Should be >= 0 and less than the number of TPU cores in the task on which the node is placed. -
combiners
A list of string scalars, one for each embedding table that specify how to normalize the embedding activations after weighted summation. Supported combiners are 'mean', 'sum', or 'sqrtn'. It is invalid to have the sum of the weights be 0 for 'mean' or the sum of the squared weights be 0 for 'sqrtn'. If combiners isn't passed, the default is to use 'sum' for all tables.
-
-
Constructor Details
-
Inputs
-