Class SymbolicGradient
java.lang.Object
org.tensorflow.op.RawOp
org.tensorflow.op.train.SymbolicGradient
-
Nested Class Summary
Nested Classes -
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final StringThe name of this op, as known by TensorFlow core engine -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionstatic SymbolicGradientcreate(Scope scope, Iterable<Operand<?>> input, List<Class<? extends TType>> Tout, ConcreteFunction f) Factory method to create a class wrapping a new SymbolicGradient operation.iterator()output()Gets output. a list of output tensors of size N;Methods inherited from interface Iterable
forEach, spliterator
-
Field Details
-
OP_NAME
The name of this op, as known by TensorFlow core engine- See Also:
-
-
Constructor Details
-
SymbolicGradient
-
-
Method Details
-
create
@Endpoint(describeByClass=true) public static SymbolicGradient create(Scope scope, Iterable<Operand<?>> input, List<Class<? extends TType>> Tout, ConcreteFunction f) Factory method to create a class wrapping a new SymbolicGradient operation.- Parameters:
scope- current scopeinput- a list of input tensors of size N + M;Tout- the type list for the input list.f- The function we want to compute the gradient for.The function 'f' must be a numerical function which takes N inputs and produces M outputs. Its gradient function 'g', which is computed by this SymbolicGradient op is a function taking N + M inputs and produces N outputs.
I.e. if we have (y1, y2, ..., y_M) = f(x1, x2, ..., x_N), then, g is (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N, dL/dy1, dL/dy2, ..., dL/dy_M),
where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the loss function). dL/dx_i is the partial derivative of L with respect to x_i.
(Needs some math expert to say the comment above better.)
- Returns:
- a new instance of SymbolicGradient
-
output
-
iterator
-