1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::hash;
use std::iter::FromIterator;
use std::iter::IntoIterator;
use std::mem;
use std::ops::{Index, IndexMut};
use alloc::boxed::Box;
use alloc::vec::Vec;
use crate::imp_prelude::*;
use crate::iter::{Iter, IterMut};
use crate::NdIndex;
use crate::numeric_util;
use crate::{FoldWhile, Zip};
#[cold]
#[inline(never)]
pub(crate) fn array_out_of_bounds() -> ! {
panic!("ndarray: index out of bounds");
}
#[inline(always)]
pub fn debug_bounds_check<S, D, I>(_a: &ArrayBase<S, D>, _index: &I)
where
D: Dimension,
I: NdIndex<D>,
S: Data,
{
debug_bounds_check!(_a, *_index);
}
/// Access the element at **index**.
///
/// **Panics** if index is out of bounds.
impl<S, D, I> Index<I> for ArrayBase<S, D>
where
D: Dimension,
I: NdIndex<D>,
S: Data,
{
type Output = S::Elem;
#[inline]
fn index(&self, index: I) -> &S::Elem {
debug_bounds_check!(self, index);
unsafe {
&*self.ptr.as_ptr().offset(
index
.index_checked(&self.dim, &self.strides)
.unwrap_or_else(|| array_out_of_bounds()),
)
}
}
}
/// Access the element at **index** mutably.
///
/// **Panics** if index is out of bounds.
impl<S, D, I> IndexMut<I> for ArrayBase<S, D>
where
D: Dimension,
I: NdIndex<D>,
S: DataMut,
{
#[inline]
fn index_mut(&mut self, index: I) -> &mut S::Elem {
debug_bounds_check!(self, index);
unsafe {
&mut *self.as_mut_ptr().offset(
index
.index_checked(&self.dim, &self.strides)
.unwrap_or_else(|| array_out_of_bounds()),
)
}
}
}
/// Return `true` if the array shapes and all elements of `self` and
/// `rhs` are equal. Return `false` otherwise.
impl<A, B, S, S2, D> PartialEq<ArrayBase<S2, D>> for ArrayBase<S, D>
where
A: PartialEq<B>,
S: Data<Elem = A>,
S2: Data<Elem = B>,
D: Dimension,
{
fn eq(&self, rhs: &ArrayBase<S2, D>) -> bool {
if self.shape() != rhs.shape() {
return false;
}
if let Some(self_s) = self.as_slice() {
if let Some(rhs_s) = rhs.as_slice() {
return numeric_util::unrolled_eq(self_s, rhs_s);
}
}
Zip::from(self)
.and(rhs)
.fold_while(true, |_, a, b| {
if a != b {
FoldWhile::Done(false)
} else {
FoldWhile::Continue(true)
}
})
.into_inner()
}
}
/// Return `true` if the array shapes and all elements of `self` and
/// `rhs` are equal. Return `false` otherwise.
impl<'a, A, B, S, S2, D> PartialEq<&'a ArrayBase<S2, D>> for ArrayBase<S, D>
where
A: PartialEq<B>,
S: Data<Elem = A>,
S2: Data<Elem = B>,
D: Dimension,
{
fn eq(&self, rhs: &&ArrayBase<S2, D>) -> bool {
*self == **rhs
}
}
/// Return `true` if the array shapes and all elements of `self` and
/// `rhs` are equal. Return `false` otherwise.
impl<'a, A, B, S, S2, D> PartialEq<ArrayBase<S2, D>> for &'a ArrayBase<S, D>
where
A: PartialEq<B>,
S: Data<Elem = A>,
S2: Data<Elem = B>,
D: Dimension,
{
fn eq(&self, rhs: &ArrayBase<S2, D>) -> bool {
**self == *rhs
}
}
impl<S, D> Eq for ArrayBase<S, D>
where
D: Dimension,
S: Data,
S::Elem: Eq,
{
}
impl<A, S> From<Box<[A]>> for ArrayBase<S, Ix1>
where
S: DataOwned<Elem = A>,
{
/// Create a one-dimensional array from a boxed slice (no copying needed).
///
/// **Panics** if the length is greater than `isize::MAX`.
fn from(b: Box<[A]>) -> Self {
Self::from_vec(b.into_vec())
}
}
impl<A, S> From<Vec<A>> for ArrayBase<S, Ix1>
where
S: DataOwned<Elem = A>,
{
/// Create a one-dimensional array from a vector (no copying needed).
///
/// **Panics** if the length is greater than `isize::MAX`.
///
/// ```rust
/// use ndarray::Array;
///
/// let array = Array::from(vec![1., 2., 3., 4.]);
/// ```
fn from(v: Vec<A>) -> Self {
Self::from_vec(v)
}
}
impl<A, S> FromIterator<A> for ArrayBase<S, Ix1>
where
S: DataOwned<Elem = A>,
{
/// Create a one-dimensional array from an iterable.
///
/// **Panics** if the length is greater than `isize::MAX`.
///
/// ```rust
/// use ndarray::{Array, arr1};
///
/// // Either use `from_iter` directly or use `Iterator::collect`.
/// let array = Array::from_iter((0..5).map(|x| x * x));
/// assert!(array == arr1(&[0, 1, 4, 9, 16]))
/// ```
fn from_iter<I>(iterable: I) -> ArrayBase<S, Ix1>
where
I: IntoIterator<Item = A>,
{
Self::from_iter(iterable)
}
}
impl<'a, S, D> IntoIterator for &'a ArrayBase<S, D>
where
D: Dimension,
S: Data,
{
type Item = &'a S::Elem;
type IntoIter = Iter<'a, S::Elem, D>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, S, D> IntoIterator for &'a mut ArrayBase<S, D>
where
D: Dimension,
S: DataMut,
{
type Item = &'a mut S::Elem;
type IntoIter = IterMut<'a, S::Elem, D>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<'a, A, D> IntoIterator for ArrayView<'a, A, D>
where
D: Dimension,
{
type Item = &'a A;
type IntoIter = Iter<'a, A, D>;
fn into_iter(self) -> Self::IntoIter {
self.into_iter_()
}
}
impl<'a, A, D> IntoIterator for ArrayViewMut<'a, A, D>
where
D: Dimension,
{
type Item = &'a mut A;
type IntoIter = IterMut<'a, A, D>;
fn into_iter(self) -> Self::IntoIter {
self.into_iter_()
}
}
impl<S, D> hash::Hash for ArrayBase<S, D>
where
D: Dimension,
S: Data,
S::Elem: hash::Hash,
{
// Note: elements are hashed in the logical order
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.shape().hash(state);
if let Some(self_s) = self.as_slice() {
hash::Hash::hash_slice(self_s, state);
} else {
for row in self.rows() {
if let Some(row_s) = row.as_slice() {
hash::Hash::hash_slice(row_s, state);
} else {
for elt in row {
elt.hash(state)
}
}
}
}
}
}
// NOTE: ArrayBase keeps an internal raw pointer that always
// points into the storage. This is Sync & Send as long as we
// follow the usual inherited mutability rules, as we do with
// Vec, &[] and &mut []
/// `ArrayBase` is `Sync` when the storage type is.
unsafe impl<S, D> Sync for ArrayBase<S, D>
where
S: Sync + Data,
D: Sync,
{
}
/// `ArrayBase` is `Send` when the storage type is.
unsafe impl<S, D> Send for ArrayBase<S, D>
where
S: Send + Data,
D: Send,
{
}
#[cfg(any(feature = "serde"))]
// Use version number so we can add a packed format later.
pub const ARRAY_FORMAT_VERSION: u8 = 1u8;
// use "raw" form instead of type aliases here so that they show up in docs
/// Implementation of `ArrayView::from(&S)` where `S` is a slice or sliceable.
impl<'a, A, Slice: ?Sized> From<&'a Slice> for ArrayView<'a, A, Ix1>
where
Slice: AsRef<[A]>,
{
/// Create a one-dimensional read-only array view of the data in `slice`.
///
/// **Panics** if the slice length is greater than `isize::MAX`.
fn from(slice: &'a Slice) -> Self {
let xs = slice.as_ref();
if mem::size_of::<A>() == 0 {
assert!(
xs.len() <= ::std::isize::MAX as usize,
"Slice length must fit in `isize`.",
);
}
unsafe { Self::from_shape_ptr(xs.len(), xs.as_ptr()) }
}
}
/// Implementation of `ArrayView::from(&A)` where `A` is an array.
impl<'a, A, S, D> From<&'a ArrayBase<S, D>> for ArrayView<'a, A, D>
where
S: Data<Elem = A>,
D: Dimension,
{
/// Create a read-only array view of the array.
fn from(array: &'a ArrayBase<S, D>) -> Self {
array.view()
}
}
/// Implementation of `ArrayViewMut::from(&mut S)` where `S` is a slice or sliceable.
impl<'a, A, Slice: ?Sized> From<&'a mut Slice> for ArrayViewMut<'a, A, Ix1>
where
Slice: AsMut<[A]>,
{
/// Create a one-dimensional read-write array view of the data in `slice`.
///
/// **Panics** if the slice length is greater than `isize::MAX`.
fn from(slice: &'a mut Slice) -> Self {
let xs = slice.as_mut();
if mem::size_of::<A>() == 0 {
assert!(
xs.len() <= ::std::isize::MAX as usize,
"Slice length must fit in `isize`.",
);
}
unsafe { Self::from_shape_ptr(xs.len(), xs.as_mut_ptr()) }
}
}
/// Implementation of `ArrayViewMut::from(&mut A)` where `A` is an array.
impl<'a, A, S, D> From<&'a mut ArrayBase<S, D>> for ArrayViewMut<'a, A, D>
where
S: DataMut<Elem = A>,
D: Dimension,
{
/// Create a read-write array view of the array.
fn from(array: &'a mut ArrayBase<S, D>) -> Self {
array.view_mut()
}
}
impl<A, D> From<Array<A, D>> for ArcArray<A, D>
where
D: Dimension,
{
fn from(arr: Array<A, D>) -> ArcArray<A, D> {
arr.into_shared()
}
}
/// Argument conversion into an array view
///
/// The trait is parameterized over `A`, the element type, and `D`, the
/// dimensionality of the array. `D` defaults to one-dimensional.
///
/// Use `.into()` to do the conversion.
///
/// ```
/// use ndarray::AsArray;
///
/// fn sum<'a, V: AsArray<'a, f64>>(data: V) -> f64 {
/// let array_view = data.into();
/// array_view.sum()
/// }
///
/// assert_eq!(
/// sum(&[1., 2., 3.]),
/// 6.
/// );
///
/// ```
pub trait AsArray<'a, A: 'a, D = Ix1>: Into<ArrayView<'a, A, D>>
where
D: Dimension,
{
}
impl<'a, A: 'a, D, T> AsArray<'a, A, D> for T
where
T: Into<ArrayView<'a, A, D>>,
D: Dimension,
{
}
/// Create an owned array with a default state.
///
/// The array is created with dimension `D::default()`, which results
/// in for example dimensions `0` and `(0, 0)` with zero elements for the
/// one-dimensional and two-dimensional cases respectively.
///
/// The default dimension for `IxDyn` is `IxDyn(&[0])` (array has zero
/// elements). And the default for the dimension `()` is `()` (array has
/// one element).
///
/// Since arrays cannot grow, the intention is to use the default value as
/// placeholder.
impl<A, S, D> Default for ArrayBase<S, D>
where
S: DataOwned<Elem = A>,
D: Dimension,
A: Default,
{
// NOTE: We can implement Default for non-zero dimensional array views by
// using an empty slice, however we need a trait for nonzero Dimension.
fn default() -> Self {
ArrayBase::default(D::default())
}
}