1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
use std::ffi::{CStr, CString};
use std::marker::PhantomData;
use tensorflow_sys as tf;
use crate::eager::{Context, ReadonlyTensor};
use crate::{AnyTensor, DataType, Result, Status, TensorType};
/// A handle to a tensor on a device.
///
/// Constructing a TensorHandle requires a reference to an execute context so that the
/// generated handle will not out live the context.
/// ```
/// # use tensorflow::{Result, Tensor};
/// use tensorflow::eager::*;
/// # fn main() -> Result<()> {
/// let opts = ContextOptions::new();
/// let ctx = Context::new(opts)?;
///
/// let t = Tensor::from(&[3i32]).freeze();
/// let h = TensorHandle::new(&ctx, &t)?;
/// let v = h.resolve::<i32>()?;
/// assert_eq!(&v[..], &[3i32]);
/// # Ok(())
/// # }
/// ```
///
/// TensorHandle manages the same buffer of the tensor. Users can destruct the Tensor
/// while leaving the TensorHandle. This is a valid use case for TensorHandle.
/// ```
/// # use tensorflow::{Result, Tensor};
/// use tensorflow::eager::*;
///
/// # fn main() -> Result<()> {
/// let opts = ContextOptions::new();
/// let ctx = Context::new(opts)?;
/// let h = {
/// let t = Tensor::from(&[3i32]).freeze();
/// TensorHandle::new(&ctx, &t)?
/// };
/// // At this point, the buffer is managed only by the handle.
/// # Ok(())
/// # }
/// ```
///
/// Since TensorHandle cannot be alive beyond the lifetime of the context, the following
/// code will not compile.
/// ```compile_fail
/// # use tensorflow::{Result, Tensor};
/// use tensorflow::eager::*;
///
/// # fn main() -> Result<()> {
/// let h = {
/// let opts = ContextOptions::new();
/// let ctx = Context::new(opts)?;
///
/// let t = Tensor::from(&[3i32]).freeze();
/// TensorHandle::new(&ctx, &t)?
/// };
/// # Ok(())
/// # }
/// ```
///
#[derive(Debug)]
pub struct TensorHandle<'a> {
pub(super) inner: *mut tf::TFE_TensorHandle,
// TensorHandle should not live longer than a given context.
ctx: PhantomData<&'a Context>,
}
impl<'a> Drop for TensorHandle<'a> {
fn drop(&mut self) {
unsafe {
tf::TFE_DeleteTensorHandle(self.inner);
}
}
}
impl<'a> TensorHandle<'a> {
/// Create a TensorHandle from the input Tensor
pub fn new<T: TensorType>(
_ctx: &'a Context,
t: &ReadonlyTensor<T>,
) -> Result<TensorHandle<'a>> {
let status = Status::new();
let inner = unsafe { tf::TFE_NewTensorHandle(t.inner()?, status.inner) };
if inner.is_null() {
Err(status)
} else {
Ok(TensorHandle {
inner,
ctx: PhantomData,
})
}
}
/// Return the DataType that corresponds to this type.
pub fn data_type(&self) -> DataType {
unsafe { DataType::from_c(tf::TFE_TensorHandleDataType(self.inner)) }
}
/// Return the number of dimensions.
///
/// This function will block till the operation that produces the TensorHandle has completed.
pub fn num_dims(&self) -> Result<usize> {
let status = Status::new();
let num_dims = unsafe { tf::TFE_TensorHandleNumDims(self.inner, status.inner) };
if status.is_ok() {
// num_dims >= 0 when the status is ok, so we can safely cast it to u64.
Ok(num_dims as usize)
} else {
Err(status)
}
}
/// Return the number of elements
pub fn num_elements(&self) -> Result<u64> {
let status = Status::new();
let num_elements = unsafe { tf::TFE_TensorHandleNumElements(self.inner, status.inner) };
if status.is_ok() {
// num_elements >= 0 when the status is ok, so we can safely cast it to u64.
Ok(num_elements as u64)
} else {
Err(status)
}
}
/// Return the number of elements for a given dim_index.
///
/// This function will block till the operation that produces the TensorHandle has completed.
pub fn dim(&self, dim_index: i32) -> Result<u64> {
let status = Status::new();
let dim = unsafe { tf::TFE_TensorHandleDim(self.inner, dim_index, status.inner) };
if status.is_ok() {
// dim >= 0 when the status is ok, so we can safely cast it to u64.
Ok(dim as u64)
} else {
Err(status)
}
}
/// Return the device of the operation that produced the current TensorHandle.
///
/// If the TensorHandle was produced by a copy, returns the destination device of the copy.
/// Note that the returned device name is not always the device holding the tensor handle's memory.
/// If you want the latter, use backing_device_name.
///
/// This function will block till the operation that produces the current TensorHandle has completed.
pub fn device_name(&self) -> Result<String> {
let status = Status::new();
unsafe {
let device_name = tf::TFE_TensorHandleDeviceName(self.inner, status.inner);
if status.is_ok() {
Ok(CStr::from_ptr(device_name).to_str()?.to_string())
} else {
Err(status)
}
}
}
/// Returns the name of the device in whose memory underlying the current TensorHandle resides.
///
/// This function will block till the operation that produces the current TensorHandle has completed.
pub fn backing_device_name(&self) -> Result<String> {
let status = Status::new();
unsafe {
let device_name = tf::TFE_TensorHandleBackingDeviceName(self.inner, status.inner);
if status.is_ok() {
Ok(CStr::from_ptr(device_name).to_str()?.to_string())
} else {
Err(status)
}
}
}
/// Return a new TensorHandle that shares the underlying tensor with the current TensorHandle.
pub fn copy_sharing_tensor(&self) -> Result<Self> {
let status = Status::new();
let inner = unsafe { tf::TFE_TensorHandleCopySharingTensor(self.inner, status.inner) };
if status.is_ok() {
Ok(Self {
inner,
ctx: self.ctx,
})
} else {
Err(status)
}
}
/// This function will block till the operation that produces the current TensorHandle has completed.
/// The memory returned might alias the internal memory used by TensorFlow.
/// Hence, callers should not mutate this memory.
pub fn resolve<T: TensorType>(&self) -> Result<ReadonlyTensor<T>> {
let mut status = Status::new();
let tf_tensor = unsafe { tf::TFE_TensorHandleResolve(self.inner, status.inner) };
if !status.is_ok() {
return Err(status);
}
if self.data_type() != T::data_type() {
let msg = format!(
"The expected data type ({}) and underlying data type ({}) did not match.",
T::data_type(),
self.data_type()
);
status.set_lossy(crate::Code::InvalidArgument, &msg);
return Err(status);
}
// Safely unwrap since data_type was checked beforehand.
unsafe { Ok(ReadonlyTensor::from_tf_tensor(tf_tensor).unwrap()) }
}
/// Create a new TensorHandle with the same contents as the current TensorHandle but placed
/// in the memory of the device name 'device_name'.
/// If source and destination are the same device, then this creates a new handle
/// that shares the underlying buffer. Otherwise, it currently requires at least
/// one of the source or destination devices to be CPU (i.e., for the source or
/// destination tensor to be placed in host memory).
/// If async execution is enabled, the copy may be enqueued and the call will
/// return "non-ready" TensorHandle. Else, this function returns after the copy has
/// been done.
pub fn copy_to_device<'b>(
&self,
ctx: &'b Context,
device_name: &str,
) -> Result<TensorHandle<'b>> {
let status = Status::new();
let device_name = CString::new(device_name)?;
unsafe {
let inner = tf::TFE_TensorHandleCopyToDevice(
self.inner,
ctx.inner,
device_name.as_ptr(),
status.inner,
);
if status.is_ok() {
Ok(TensorHandle {
inner,
ctx: PhantomData,
})
} else {
Err(status)
}
}
}
/// Convert the raw TFE_TensorHandle* into a TensorHandle.
pub(super) unsafe fn from_tensor_handle(
_ctx: &'a Context,
inner: *mut tf::TFE_TensorHandle,
) -> Self {
Self {
inner,
ctx: PhantomData,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::eager::ContextOptions;
use crate::Tensor;
#[test]
fn test_tensor_handle() {
let opts = ContextOptions::new();
let ctx = Context::new(opts).unwrap();
let t = Tensor::new(&[2, 3])
.with_values(&[0_i32, 1, 2, 3, 4, 5])
.unwrap()
.freeze();
let h = TensorHandle::new(&ctx, &t).unwrap();
assert_eq!(h.data_type(), DataType::Int32);
assert_eq!(h.num_elements().unwrap(), 6);
assert_eq!(h.num_dims().unwrap(), 2);
assert_eq!(h.dim(0).unwrap(), 2);
assert_eq!(h.dim(1).unwrap(), 3);
}
#[test]
fn test_copy_sharing_tensor() {
let opts = ContextOptions::new();
let ctx = Context::new(opts).unwrap();
let t = Tensor::new(&[2, 3])
.with_values(&[0_i32, 1, 2, 3, 4, 5])
.unwrap()
.freeze();
let h = TensorHandle::new(&ctx, &t).unwrap();
let h_copy = h.copy_sharing_tensor().unwrap();
let t2 = h_copy.resolve::<i32>().unwrap();
// t and t2 may share the same memory, but it's difficuly to check
// since the `resolve` does not guarantee that.
assert_eq!(t, t2);
}
/// Following tests are disabled by default because it requires a GPU and some setup.
///
/// To run this test, you need to pass the `-- --ignored` argument to cargo test.
/// ```sh
/// cargo test --features "eager tensorflow_gpu" -- --ignored
/// ```
#[cfg(feature = "tensorflow_gpu")]
mod gpu {
use super::*;
use crate::eager::ContextOptions;
#[test]
#[ignore]
fn test_copy_to_device() {
let values = [0_i32, 1, 2, 3];
let opts = ContextOptions::new();
let ctx = Context::new(opts).unwrap();
let devices = ctx.device_list().unwrap();
let gpu_device = devices
.iter()
.find(|d| d.device_type == "GPU")
.expect("No GPU device was found.");
let target_device = &gpu_device.name;
let t = Tensor::new(&[2, 2]).with_values(&values).unwrap().freeze();
let h = TensorHandle::new(&ctx, &t).unwrap();
let h_gpu = TensorHandle::copy_to_device(&h, &ctx, target_device).unwrap();
assert_eq!(&h_gpu.device_name().unwrap(), target_device);
let t2 = h_gpu.resolve::<i32>().unwrap();
assert_eq!(&t[..], &t2[..]);
}
#[test]
#[ignore]
fn test_copy_to_device_lifetime() {
let values = [0_i32, 1, 2, 3];
let opts = ContextOptions::new();
let ctx = Context::new(opts).unwrap();
let devices = ctx.device_list().unwrap();
let gpu_device = devices
.iter()
.find(|d| d.device_type == "GPU")
.expect("No GPU device was found.");
let target_device = &gpu_device.name;
let h_gpu = {
// Create a temporal Context
let opts = ContextOptions::new();
let ctx2 = Context::new(opts).unwrap();
let t = Tensor::new(&[2, 2]).with_values(&values).unwrap().freeze();
// Create a TensorHandle managed by the context `ctx2`.
let h = TensorHandle::new(&ctx2, &t).unwrap();
// Copy to GPU. This creates a new handle managed by the context `ctx`.
h.copy_to_device(&ctx, target_device).unwrap()
};
assert_eq!(&h_gpu.device_name().unwrap(), target_device);
let t2 = h_gpu.resolve::<i32>().unwrap();
assert_eq!(&values[..], &t2[..]);
}
}
}