1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std::mem::{size_of, ManuallyDrop};
use alloc::slice;
use alloc::vec;
use alloc::vec::Vec;
use rawpointer::PointerExt;

use crate::imp_prelude::*;

use crate::{arraytraits, DimMax};
use crate::argument_traits::AssignElem;
use crate::dimension;
use crate::dimension::IntoDimension;
use crate::dimension::{
    abs_index, axes_of, do_slice, merge_axes, move_min_stride_axis_to_last,
    offset_from_low_addr_ptr_to_logical_ptr, size_of_shape_checked, stride_offset, Axes,
};
use crate::dimension::broadcast::co_broadcast;
use crate::dimension::reshape_dim;
use crate::error::{self, ErrorKind, ShapeError, from_kind};
use crate::math_cell::MathCell;
use crate::itertools::zip;
use crate::AxisDescription;
use crate::order::Order;
use crate::shape_builder::ShapeArg;
use crate::zip::{IntoNdProducer, Zip};

use crate::iter::{
    AxisChunksIter, AxisChunksIterMut, AxisIter, AxisIterMut, ExactChunks, ExactChunksMut,
    IndexedIter, IndexedIterMut, Iter, IterMut, Lanes, LanesMut, Windows,
};
use crate::slice::{MultiSliceArg, SliceArg};
use crate::stacking::concatenate;
use crate::{NdIndex, Slice, SliceInfoElem};

/// # Methods For All Array Types
impl<A, S, D> ArrayBase<S, D>
where
    S: RawData<Elem = A>,
    D: Dimension,
{
    /// Return the total number of elements in the array.
    pub fn len(&self) -> usize {
        self.dim.size()
    }

    /// Return the length of `axis`.
    ///
    /// The axis should be in the range `Axis(` 0 .. *n* `)` where *n* is the
    /// number of dimensions (axes) of the array.
    ///
    /// ***Panics*** if the axis is out of bounds.
    pub fn len_of(&self, axis: Axis) -> usize {
        self.dim[axis.index()]
    }

    /// Return whether the array has any elements
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return the number of dimensions (axes) in the array
    pub fn ndim(&self) -> usize {
        self.dim.ndim()
    }

    /// Return the shape of the array in its “pattern” form,
    /// an integer in the one-dimensional case, tuple in the n-dimensional cases
    /// and so on.
    pub fn dim(&self) -> D::Pattern {
        self.dim.clone().into_pattern()
    }

    /// Return the shape of the array as it's stored in the array.
    ///
    /// This is primarily useful for passing to other `ArrayBase`
    /// functions, such as when creating another array of the same
    /// shape and dimensionality.
    ///
    /// ```
    /// use ndarray::Array;
    ///
    /// let a = Array::from_elem((2, 3), 5.);
    ///
    /// // Create an array of zeros that's the same shape and dimensionality as `a`.
    /// let b = Array::<f64, _>::zeros(a.raw_dim());
    /// ```
    pub fn raw_dim(&self) -> D {
        self.dim.clone()
    }

    /// Return the shape of the array as a slice.
    ///
    /// Note that you probably don't want to use this to create an array of the
    /// same shape as another array because creating an array with e.g.
    /// [`Array::zeros()`](ArrayBase::zeros) using a shape of type `&[usize]`
    /// results in a dynamic-dimensional array. If you want to create an array
    /// that has the same shape and dimensionality as another array, use
    /// [`.raw_dim()`](ArrayBase::raw_dim) instead:
    ///
    /// ```rust
    /// use ndarray::{Array, Array2};
    ///
    /// let a = Array2::<i32>::zeros((3, 4));
    /// let shape = a.shape();
    /// assert_eq!(shape, &[3, 4]);
    ///
    /// // Since `a.shape()` returned `&[usize]`, we get an `ArrayD` instance:
    /// let b = Array::zeros(shape);
    /// assert_eq!(a.clone().into_dyn(), b);
    ///
    /// // To get the same dimension type, use `.raw_dim()` instead:
    /// let c = Array::zeros(a.raw_dim());
    /// assert_eq!(a, c);
    /// ```
    pub fn shape(&self) -> &[usize] {
        self.dim.slice()
    }

    /// Return the strides of the array as a slice.
    pub fn strides(&self) -> &[isize] {
        let s = self.strides.slice();
        // reinterpret unsigned integer as signed
        unsafe { slice::from_raw_parts(s.as_ptr() as *const _, s.len()) }
    }

    /// Return the stride of `axis`.
    ///
    /// The axis should be in the range `Axis(` 0 .. *n* `)` where *n* is the
    /// number of dimensions (axes) of the array.
    ///
    /// ***Panics*** if the axis is out of bounds.
    pub fn stride_of(&self, axis: Axis) -> isize {
        // strides are reinterpreted as isize
        self.strides[axis.index()] as isize
    }

    /// Return a read-only view of the array
    pub fn view(&self) -> ArrayView<'_, A, D>
    where
        S: Data,
    {
        debug_assert!(self.pointer_is_inbounds());
        unsafe { ArrayView::new(self.ptr, self.dim.clone(), self.strides.clone()) }
    }

    /// Return a read-write view of the array
    pub fn view_mut(&mut self) -> ArrayViewMut<'_, A, D>
    where
        S: DataMut,
    {
        self.ensure_unique();
        unsafe { ArrayViewMut::new(self.ptr, self.dim.clone(), self.strides.clone()) }
    }

    /// Return a shared view of the array with elements as if they were embedded in cells.
    ///
    /// The cell view requires a mutable borrow of the array. Once borrowed the
    /// cell view itself can be copied and accessed without exclusivity.
    ///
    /// The view acts "as if" the elements are temporarily in cells, and elements
    /// can be changed through shared references using the regular cell methods.
    pub fn cell_view(&mut self) -> ArrayView<'_, MathCell<A>, D>
    where
        S: DataMut,
    {
        self.view_mut().into_cell_view()
    }

    /// Return an uniquely owned copy of the array.
    ///
    /// If the input array is contiguous, then the output array will have the same
    /// memory layout. Otherwise, the layout of the output array is unspecified.
    /// If you need a particular layout, you can allocate a new array with the
    /// desired memory layout and [`.assign()`](Self::assign) the data.
    /// Alternatively, you can collectan iterator, like this for a result in
    /// standard layout:
    ///
    /// ```
    /// # use ndarray::prelude::*;
    /// # let arr = Array::from_shape_vec((2, 2).f(), vec![1, 2, 3, 4]).unwrap();
    /// # let owned = {
    /// Array::from_shape_vec(arr.raw_dim(), arr.iter().cloned().collect()).unwrap()
    /// # };
    /// # assert!(owned.is_standard_layout());
    /// # assert_eq!(arr, owned);
    /// ```
    ///
    /// or this for a result in column-major (Fortran) layout:
    ///
    /// ```
    /// # use ndarray::prelude::*;
    /// # let arr = Array::from_shape_vec((2, 2), vec![1, 2, 3, 4]).unwrap();
    /// # let owned = {
    /// Array::from_shape_vec(arr.raw_dim().f(), arr.t().iter().cloned().collect()).unwrap()
    /// # };
    /// # assert!(owned.t().is_standard_layout());
    /// # assert_eq!(arr, owned);
    /// ```
    pub fn to_owned(&self) -> Array<A, D>
    where
        A: Clone,
        S: Data,
    {
        if let Some(slc) = self.as_slice_memory_order() {
            unsafe {
                Array::from_shape_vec_unchecked(
                    self.dim.clone().strides(self.strides.clone()),
                    slc.to_vec(),
                )
            }
        } else {
            self.map(A::clone)
        }
    }

    /// Return a shared ownership (copy on write) array, cloning the array
    /// elements if necessary.
    pub fn to_shared(&self) -> ArcArray<A, D>
    where
        A: Clone,
        S: Data,
    {
        S::to_shared(self)
    }

    /// Turn the array into a uniquely owned array, cloning the array elements
    /// if necessary.
    pub fn into_owned(self) -> Array<A, D>
    where
        A: Clone,
        S: Data,
    {
        S::into_owned(self)
    }

    /// Converts the array into `Array<A, D>` if this is possible without
    /// cloning the array elements. Otherwise, returns `self` unchanged.
    ///
    /// ```
    /// use ndarray::{array, rcarr2, ArcArray2, Array2};
    ///
    /// // Reference-counted, clone-on-write `ArcArray`.
    /// let a: ArcArray2<_> = rcarr2(&[[1., 2.], [3., 4.]]);
    /// {
    ///     // Another reference to the same data.
    ///     let b: ArcArray2<_> = a.clone();
    ///     // Since there are two references to the same data, `.into_owned()`
    ///     // would require cloning the data, so `.try_into_owned_nocopy()`
    ///     // returns `Err`.
    ///     assert!(b.try_into_owned_nocopy().is_err());
    /// }
    /// // Here, since the second reference has been dropped, the `ArcArray`
    /// // can be converted into an `Array` without cloning the data.
    /// let unique: Array2<_> = a.try_into_owned_nocopy().unwrap();
    /// assert_eq!(unique, array![[1., 2.], [3., 4.]]);
    /// ```
    pub fn try_into_owned_nocopy(self) -> Result<Array<A, D>, Self>
    where
        S: Data,
    {
        S::try_into_owned_nocopy(self)
    }

    /// Turn the array into a shared ownership (copy on write) array,
    /// without any copying.
    pub fn into_shared(self) -> ArcArray<A, D>
    where
        S: DataOwned,
    {
        let data = self.data.into_shared();
        // safe because: equivalent unmoved data, ptr and dims remain valid
        unsafe {
            ArrayBase::from_data_ptr(data, self.ptr).with_strides_dim(self.strides, self.dim)
        }
    }

    /// Returns a reference to the first element of the array, or `None` if it
    /// is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// use ndarray::Array3;
    ///
    /// let mut a = Array3::<f64>::zeros([3, 4, 2]);
    /// a[[0, 0, 0]] = 42.;
    /// assert_eq!(a.first(), Some(&42.));
    ///
    /// let b = Array3::<f64>::zeros([3, 0, 5]);
    /// assert_eq!(b.first(), None);
    /// ```
    pub fn first(&self) -> Option<&A>
    where
        S: Data,
    {
        if self.is_empty() {
            None
        } else {
            Some(unsafe { &*self.as_ptr() })
        }
    }

    /// Returns a mutable reference to the first element of the array, or
    /// `None` if it is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// use ndarray::Array3;
    ///
    /// let mut a = Array3::<f64>::zeros([3, 4, 2]);
    /// *a.first_mut().unwrap() = 42.;
    /// assert_eq!(a[[0, 0, 0]], 42.);
    ///
    /// let mut b = Array3::<f64>::zeros([3, 0, 5]);
    /// assert_eq!(b.first_mut(), None);
    /// ```
    pub fn first_mut(&mut self) -> Option<&mut A>
    where
        S: DataMut,
    {
        if self.is_empty() {
            None
        } else {
            Some(unsafe { &mut *self.as_mut_ptr() })
        }
    }

    /// Returns a reference to the last element of the array, or `None` if it
    /// is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// use ndarray::Array3;
    ///
    /// let mut a = Array3::<f64>::zeros([3, 4, 2]);
    /// a[[2, 3, 1]] = 42.;
    /// assert_eq!(a.last(), Some(&42.));
    ///
    /// let b = Array3::<f64>::zeros([3, 0, 5]);
    /// assert_eq!(b.last(), None);
    /// ```
    pub fn last(&self) -> Option<&A>
    where
        S: Data,
    {
        if self.is_empty() {
            None
        } else {
            let mut index = self.raw_dim();
            for ax in 0..index.ndim() {
                index[ax] -= 1;
            }
            Some(unsafe { self.uget(index) })
        }
    }

    /// Returns a mutable reference to the last element of the array, or `None`
    /// if it is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// use ndarray::Array3;
    ///
    /// let mut a = Array3::<f64>::zeros([3, 4, 2]);
    /// *a.last_mut().unwrap() = 42.;
    /// assert_eq!(a[[2, 3, 1]], 42.);
    ///
    /// let mut b = Array3::<f64>::zeros([3, 0, 5]);
    /// assert_eq!(b.last_mut(), None);
    /// ```
    pub fn last_mut(&mut self) -> Option<&mut A>
    where
        S: DataMut,
    {
        if self.is_empty() {
            None
        } else {
            let mut index = self.raw_dim();
            for ax in 0..index.ndim() {
                index[ax] -= 1;
            }
            Some(unsafe { self.uget_mut(index) })
        }
    }

    /// Return an iterator of references to the elements of the array.
    ///
    /// Elements are visited in the *logical order* of the array, which
    /// is where the rightmost index is varying the fastest.
    ///
    /// Iterator element type is `&A`.
    pub fn iter(&self) -> Iter<'_, A, D>
    where
        S: Data,
    {
        debug_assert!(self.pointer_is_inbounds());
        self.view().into_iter_()
    }

    /// Return an iterator of mutable references to the elements of the array.
    ///
    /// Elements are visited in the *logical order* of the array, which
    /// is where the rightmost index is varying the fastest.
    ///
    /// Iterator element type is `&mut A`.
    pub fn iter_mut(&mut self) -> IterMut<'_, A, D>
    where
        S: DataMut,
    {
        self.view_mut().into_iter_()
    }

    /// Return an iterator of indexes and references to the elements of the array.
    ///
    /// Elements are visited in the *logical order* of the array, which
    /// is where the rightmost index is varying the fastest.
    ///
    /// Iterator element type is `(D::Pattern, &A)`.
    ///
    /// See also [`Zip::indexed`]
    pub fn indexed_iter(&self) -> IndexedIter<'_, A, D>
    where
        S: Data,
    {
        IndexedIter::new(self.view().into_elements_base())
    }

    /// Return an iterator of indexes and mutable references to the elements of the array.
    ///
    /// Elements are visited in the *logical order* of the array, which
    /// is where the rightmost index is varying the fastest.
    ///
    /// Iterator element type is `(D::Pattern, &mut A)`.
    pub fn indexed_iter_mut(&mut self) -> IndexedIterMut<'_, A, D>
    where
        S: DataMut,
    {
        IndexedIterMut::new(self.view_mut().into_elements_base())
    }

    /// Return a sliced view of the array.
    ///
    /// See [*Slicing*](#slicing) for full documentation.
    /// See also [`s!`], [`SliceArg`], and [`SliceInfo`](crate::SliceInfo).
    ///
    /// **Panics** if an index is out of bounds or step size is zero.<br>
    /// (**Panics** if `D` is `IxDyn` and `info` does not match the number of array axes.)
    pub fn slice<I>(&self, info: I) -> ArrayView<'_, A, I::OutDim>
    where
        I: SliceArg<D>,
        S: Data,
    {
        self.view().slice_move(info)
    }

    /// Return a sliced read-write view of the array.
    ///
    /// See [*Slicing*](#slicing) for full documentation.
    /// See also [`s!`], [`SliceArg`], and [`SliceInfo`](crate::SliceInfo).
    ///
    /// **Panics** if an index is out of bounds or step size is zero.<br>
    /// (**Panics** if `D` is `IxDyn` and `info` does not match the number of array axes.)
    pub fn slice_mut<I>(&mut self, info: I) -> ArrayViewMut<'_, A, I::OutDim>
    where
        I: SliceArg<D>,
        S: DataMut,
    {
        self.view_mut().slice_move(info)
    }

    /// Return multiple disjoint, sliced, mutable views of the array.
    ///
    /// See [*Slicing*](#slicing) for full documentation. See also
    /// [`MultiSliceArg`], [`s!`], [`SliceArg`], and
    /// [`SliceInfo`](crate::SliceInfo).
    ///
    /// **Panics** if any of the following occur:
    ///
    /// * if any of the views would intersect (i.e. if any element would appear in multiple slices)
    /// * if an index is out of bounds or step size is zero
    /// * if `D` is `IxDyn` and `info` does not match the number of array axes
    ///
    /// # Example
    ///
    /// ```
    /// use ndarray::{arr2, s};
    ///
    /// let mut a = arr2(&[[1, 2, 3], [4, 5, 6]]);
    /// let (mut edges, mut middle) = a.multi_slice_mut((s![.., ..;2], s![.., 1]));
    /// edges.fill(1);
    /// middle.fill(0);
    /// assert_eq!(a, arr2(&[[1, 0, 1], [1, 0, 1]]));
    /// ```
    pub fn multi_slice_mut<'a, M>(&'a mut self, info: M) -> M::Output
    where
        M: MultiSliceArg<'a, A, D>,
        S: DataMut,
    {
        info.multi_slice_move(self.view_mut())
    }

    /// Slice the array, possibly changing the number of dimensions.
    ///
    /// See [*Slicing*](#slicing) for full documentation.
    /// See also [`s!`], [`SliceArg`], and [`SliceInfo`](crate::SliceInfo).
    ///
    /// **Panics** if an index is out of bounds or step size is zero.<br>
    /// (**Panics** if `D` is `IxDyn` and `info` does not match the number of array axes.)
    pub fn slice_move<I>(mut self, info: I) -> ArrayBase<S, I::OutDim>
    where
        I: SliceArg<D>,
    {
        assert_eq!(
            info.in_ndim(),
            self.ndim(),
            "The input dimension of `info` must match the array to be sliced.",
        );
        let out_ndim = info.out_ndim();
        let mut new_dim = I::OutDim::zeros(out_ndim);
        let mut new_strides = I::OutDim::zeros(out_ndim);

        let mut old_axis = 0;
        let mut new_axis = 0;
        info.as_ref().iter().for_each(|&ax_info| match ax_info {
            SliceInfoElem::Slice { start, end, step } => {
                // Slice the axis in-place to update the `dim`, `strides`, and `ptr`.
                self.slice_axis_inplace(Axis(old_axis), Slice { start, end, step });
                // Copy the sliced dim and stride to corresponding axis.
                new_dim[new_axis] = self.dim[old_axis];
                new_strides[new_axis] = self.strides[old_axis];
                old_axis += 1;
                new_axis += 1;
            }
            SliceInfoElem::Index(index) => {
                // Collapse the axis in-place to update the `ptr`.
                let i_usize = abs_index(self.len_of(Axis(old_axis)), index);
                self.collapse_axis(Axis(old_axis), i_usize);
                // Skip copying the axis since it should be removed. Note that
                // removing this axis is safe because `.collapse_axis()` panics
                // if the index is out-of-bounds, so it will panic if the axis
                // is zero length.
                old_axis += 1;
            }
            SliceInfoElem::NewAxis => {
                // Set the dim and stride of the new axis.
                new_dim[new_axis] = 1;
                new_strides[new_axis] = 0;
                new_axis += 1;
            }
        });
        debug_assert_eq!(old_axis, self.ndim());
        debug_assert_eq!(new_axis, out_ndim);

        // safe because new dimension, strides allow access to a subset of old data
        unsafe { self.with_strides_dim(new_strides, new_dim) }
    }

    /// Slice the array in place without changing the number of dimensions.
    ///
    /// In particular, if an axis is sliced with an index, the axis is
    /// collapsed, as in [`.collapse_axis()`], rather than removed, as in
    /// [`.slice_move()`] or [`.index_axis_move()`].
    ///
    /// [`.collapse_axis()`]: Self::collapse_axis
    /// [`.slice_move()`]: Self::slice_move
    /// [`.index_axis_move()`]: Self::index_axis_move
    ///
    /// See [*Slicing*](#slicing) for full documentation.
    /// See also [`s!`], [`SliceArg`], and [`SliceInfo`](crate::SliceInfo).
    ///
    /// **Panics** in the following cases:
    ///
    /// - if an index is out of bounds
    /// - if a step size is zero
    /// - if [`SliceInfoElem::NewAxis`] is in `info`, e.g. if [`NewAxis`] was
    ///   used in the [`s!`] macro
    /// - if `D` is `IxDyn` and `info` does not match the number of array axes
    pub fn slice_collapse<I>(&mut self, info: I)
    where
        I: SliceArg<D>,
    {
        assert_eq!(
            info.in_ndim(),
            self.ndim(),
            "The input dimension of `info` must match the array to be sliced.",
        );
        let mut axis = 0;
        info.as_ref().iter().for_each(|&ax_info| match ax_info {
                SliceInfoElem::Slice { start, end, step } => {
                    self.slice_axis_inplace(Axis(axis), Slice { start, end, step });
                    axis += 1;
                }
                SliceInfoElem::Index(index) => {
                    let i_usize = abs_index(self.len_of(Axis(axis)), index);
                    self.collapse_axis(Axis(axis), i_usize);
                    axis += 1;
                }
                SliceInfoElem::NewAxis => panic!("`slice_collapse` does not support `NewAxis`."),
            });
        debug_assert_eq!(axis, self.ndim());
    }

    /// Return a view of the array, sliced along the specified axis.
    ///
    /// **Panics** if an index is out of bounds or step size is zero.<br>
    /// **Panics** if `axis` is out of bounds.
    #[must_use = "slice_axis returns an array view with the sliced result"]
    pub fn slice_axis(&self, axis: Axis, indices: Slice) -> ArrayView<'_, A, D>
    where
        S: Data,
    {
        let mut view = self.view();
        view.slice_axis_inplace(axis, indices);
        view
    }

    /// Return a mutable view of the array, sliced along the specified axis.
    ///
    /// **Panics** if an index is out of bounds or step size is zero.<br>
    /// **Panics** if `axis` is out of bounds.
    #[must_use = "slice_axis_mut returns an array view with the sliced result"]
    pub fn slice_axis_mut(&mut self, axis: Axis, indices: Slice) -> ArrayViewMut<'_, A, D>
    where
        S: DataMut,
    {
        let mut view_mut = self.view_mut();
        view_mut.slice_axis_inplace(axis, indices);
        view_mut
    }

    /// Slice the array in place along the specified axis.
    ///
    /// **Panics** if an index is out of bounds or step size is zero.<br>
    /// **Panics** if `axis` is out of bounds.
    pub fn slice_axis_inplace(&mut self, axis: Axis, indices: Slice) {
        let offset = do_slice(
            &mut self.dim.slice_mut()[axis.index()],
            &mut self.strides.slice_mut()[axis.index()],
            indices,
        );
        unsafe {
            self.ptr = self.ptr.offset(offset);
        }
        debug_assert!(self.pointer_is_inbounds());
    }

    /// Return a view of a slice of the array, with a closure specifying the
    /// slice for each axis.
    ///
    /// This is especially useful for code which is generic over the
    /// dimensionality of the array.
    ///
    /// **Panics** if an index is out of bounds or step size is zero.
    pub fn slice_each_axis<F>(&self, f: F) -> ArrayView<'_, A, D>
    where
        F: FnMut(AxisDescription) -> Slice,
        S: Data,
    {
        let mut view = self.view();
        view.slice_each_axis_inplace(f);
        view
    }

    /// Return a mutable view of a slice of the array, with a closure
    /// specifying the slice for each axis.
    ///
    /// This is especially useful for code which is generic over the
    /// dimensionality of the array.
    ///
    /// **Panics** if an index is out of bounds or step size is zero.
    pub fn slice_each_axis_mut<F>(&mut self, f: F) -> ArrayViewMut<'_, A, D>
    where
        F: FnMut(AxisDescription) -> Slice,
        S: DataMut,
    {
        let mut view = self.view_mut();
        view.slice_each_axis_inplace(f);
        view
    }

    /// Slice the array in place, with a closure specifying the slice for each
    /// axis.
    ///
    /// This is especially useful for code which is generic over the
    /// dimensionality of the array.
    ///
    /// **Panics** if an index is out of bounds or step size is zero.
    pub fn slice_each_axis_inplace<F>(&mut self, mut f: F)
    where
        F: FnMut(AxisDescription) -> Slice,
    {
        for ax in 0..self.ndim() {
            self.slice_axis_inplace(
                Axis(ax),
                f(AxisDescription {
                    axis: Axis(ax),
                    len: self.dim[ax],
                    stride: self.strides[ax] as isize,
                }),
            )
        }
    }

    /// Return a reference to the element at `index`, or return `None`
    /// if the index is out of bounds.
    ///
    /// Arrays also support indexing syntax: `array[index]`.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[1., 2.],
    ///                [3., 4.]]);
    ///
    /// assert!(
    ///     a.get((0, 1)) == Some(&2.) &&
    ///     a.get((0, 2)) == None &&
    ///     a[(0, 1)] == 2. &&
    ///     a[[0, 1]] == 2.
    /// );
    /// ```
    pub fn get<I>(&self, index: I) -> Option<&A>
    where
        S: Data,
        I: NdIndex<D>,
    {
        unsafe { self.get_ptr(index).map(|ptr| &*ptr) }
    }

    /// Return a raw pointer to the element at `index`, or return `None`
    /// if the index is out of bounds.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[1., 2.], [3., 4.]]);
    ///
    /// let v = a.raw_view();
    /// let p = a.get_ptr((0, 1)).unwrap();
    ///
    /// assert_eq!(unsafe { *p }, 2.);
    /// ```
    pub fn get_ptr<I>(&self, index: I) -> Option<*const A>
    where
        I: NdIndex<D>,
    {
        let ptr = self.ptr;
        index
            .index_checked(&self.dim, &self.strides)
            .map(move |offset| unsafe { ptr.as_ptr().offset(offset) as *const _ })
    }

    /// Return a mutable reference to the element at `index`, or return `None`
    /// if the index is out of bounds.
    pub fn get_mut<I>(&mut self, index: I) -> Option<&mut A>
    where
        S: DataMut,
        I: NdIndex<D>,
    {
        unsafe { self.get_mut_ptr(index).map(|ptr| &mut *ptr) }
    }

    /// Return a raw pointer to the element at `index`, or return `None`
    /// if the index is out of bounds.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let mut a = arr2(&[[1., 2.], [3., 4.]]);
    ///
    /// let v = a.raw_view_mut();
    /// let p = a.get_mut_ptr((0, 1)).unwrap();
    ///
    /// unsafe {
    ///     *p = 5.;
    /// }
    ///
    /// assert_eq!(a.get((0, 1)), Some(&5.));
    /// ```
    pub fn get_mut_ptr<I>(&mut self, index: I) -> Option<*mut A>
    where
        S: RawDataMut,
        I: NdIndex<D>,
    {
        // const and mut are separate to enforce &mutness as well as the
        // extra code in as_mut_ptr
        let ptr = self.as_mut_ptr();
        index
            .index_checked(&self.dim, &self.strides)
            .map(move |offset| unsafe { ptr.offset(offset) })
    }

    /// Perform *unchecked* array indexing.
    ///
    /// Return a reference to the element at `index`.
    ///
    /// **Note:** only unchecked for non-debug builds of ndarray.
    ///
    /// # Safety
    ///
    /// The caller must ensure that the index is in-bounds.
    #[inline]
    pub unsafe fn uget<I>(&self, index: I) -> &A
    where
        S: Data,
        I: NdIndex<D>,
    {
        arraytraits::debug_bounds_check(self, &index);
        let off = index.index_unchecked(&self.strides);
        &*self.ptr.as_ptr().offset(off)
    }

    /// Perform *unchecked* array indexing.
    ///
    /// Return a mutable reference to the element at `index`.
    ///
    /// **Note:** Only unchecked for non-debug builds of ndarray.
    ///
    /// # Safety
    ///
    /// The caller must ensure that:
    ///
    /// 1. the index is in-bounds and
    ///
    /// 2. the data is uniquely held by the array. (This property is guaranteed
    ///    for `Array` and `ArrayViewMut`, but not for `ArcArray` or `CowArray`.)
    #[inline]
    pub unsafe fn uget_mut<I>(&mut self, index: I) -> &mut A
    where
        S: DataMut,
        I: NdIndex<D>,
    {
        debug_assert!(self.data.is_unique());
        arraytraits::debug_bounds_check(self, &index);
        let off = index.index_unchecked(&self.strides);
        &mut *self.ptr.as_ptr().offset(off)
    }

    /// Swap elements at indices `index1` and `index2`.
    ///
    /// Indices may be equal.
    ///
    /// ***Panics*** if an index is out of bounds.
    pub fn swap<I>(&mut self, index1: I, index2: I)
    where
        S: DataMut,
        I: NdIndex<D>,
    {
        let ptr = self.as_mut_ptr();
        let offset1 = index1.index_checked(&self.dim, &self.strides);
        let offset2 = index2.index_checked(&self.dim, &self.strides);
        if let Some(offset1) = offset1 {
            if let Some(offset2) = offset2 {
                unsafe {
                    std::ptr::swap(ptr.offset(offset1), ptr.offset(offset2));
                }
                return;
            }
        }
        panic!("swap: index out of bounds for indices {:?} {:?}", index1, index2);
    }

    /// Swap elements *unchecked* at indices `index1` and `index2`.
    ///
    /// Indices may be equal.
    ///
    /// **Note:** only unchecked for non-debug builds of ndarray.
    ///
    /// # Safety
    ///
    /// The caller must ensure that:
    ///
    /// 1. both `index1` and `index2` are in-bounds and
    ///
    /// 2. the data is uniquely held by the array. (This property is guaranteed
    ///    for `Array` and `ArrayViewMut`, but not for `ArcArray` or `CowArray`.)
    pub unsafe fn uswap<I>(&mut self, index1: I, index2: I)
    where
        S: DataMut,
        I: NdIndex<D>,
    {
        debug_assert!(self.data.is_unique());
        arraytraits::debug_bounds_check(self, &index1);
        arraytraits::debug_bounds_check(self, &index2);
        let off1 = index1.index_unchecked(&self.strides);
        let off2 = index2.index_unchecked(&self.strides);
        std::ptr::swap(
            self.ptr.as_ptr().offset(off1),
            self.ptr.as_ptr().offset(off2),
        );
    }

    // `get` for zero-dimensional arrays
    // panics if dimension is not zero. otherwise an element is always present.
    fn get_0d(&self) -> &A
    where
        S: Data,
    {
        assert!(self.ndim() == 0);
        unsafe { &*self.as_ptr() }
    }

    /// Returns a view restricted to `index` along the axis, with the axis
    /// removed.
    ///
    /// See [*Subviews*](#subviews) for full documentation.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr2, ArrayView, Axis};
    ///
    /// let a = arr2(&[[1., 2. ],    // ... axis 0, row 0
    ///                [3., 4. ],    // --- axis 0, row 1
    ///                [5., 6. ]]);  // ... axis 0, row 2
    /// //               .   \
    /// //                .   axis 1, column 1
    /// //                 axis 1, column 0
    /// assert!(
    ///     a.index_axis(Axis(0), 1) == ArrayView::from(&[3., 4.]) &&
    ///     a.index_axis(Axis(1), 1) == ArrayView::from(&[2., 4., 6.])
    /// );
    /// ```
    pub fn index_axis(&self, axis: Axis, index: usize) -> ArrayView<'_, A, D::Smaller>
    where
        S: Data,
        D: RemoveAxis,
    {
        self.view().index_axis_move(axis, index)
    }

    /// Returns a mutable view restricted to `index` along the axis, with the
    /// axis removed.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr2, aview2, Axis};
    ///
    /// let mut a = arr2(&[[1., 2. ],
    ///                    [3., 4. ]]);
    /// //                   .   \
    /// //                    .   axis 1, column 1
    /// //                     axis 1, column 0
    ///
    /// {
    ///     let mut column1 = a.index_axis_mut(Axis(1), 1);
    ///     column1 += 10.;
    /// }
    ///
    /// assert!(
    ///     a == aview2(&[[1., 12.],
    ///                   [3., 14.]])
    /// );
    /// ```
    pub fn index_axis_mut(&mut self, axis: Axis, index: usize) -> ArrayViewMut<'_, A, D::Smaller>
    where
        S: DataMut,
        D: RemoveAxis,
    {
        self.view_mut().index_axis_move(axis, index)
    }

    /// Collapses the array to `index` along the axis and removes the axis.
    ///
    /// See [`.index_axis()`](Self::index_axis) and [*Subviews*](#subviews) for full documentation.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    pub fn index_axis_move(mut self, axis: Axis, index: usize) -> ArrayBase<S, D::Smaller>
    where
        D: RemoveAxis,
    {
        self.collapse_axis(axis, index);
        let dim = self.dim.remove_axis(axis);
        let strides = self.strides.remove_axis(axis);
        // safe because new dimension, strides allow access to a subset of old data
        unsafe {
            self.with_strides_dim(strides, dim)
        }
    }

    /// Selects `index` along the axis, collapsing the axis into length one.
    ///
    /// **Panics** if `axis` or `index` is out of bounds.
    pub fn collapse_axis(&mut self, axis: Axis, index: usize) {
        let offset = dimension::do_collapse_axis(&mut self.dim, &self.strides, axis.index(), index);
        self.ptr = unsafe { self.ptr.offset(offset) };
        debug_assert!(self.pointer_is_inbounds());
    }

    /// Along `axis`, select arbitrary subviews corresponding to `indices`
    /// and and copy them into a new array.
    ///
    /// **Panics** if `axis` or an element of `indices` is out of bounds.
    ///
    /// ```
    /// use ndarray::{arr2, Axis};
    ///
    /// let x = arr2(&[[0., 1.],
    ///                [2., 3.],
    ///                [4., 5.],
    ///                [6., 7.],
    ///                [8., 9.]]);
    ///
    /// let r = x.select(Axis(0), &[0, 4, 3]);
    /// assert!(
    ///         r == arr2(&[[0., 1.],
    ///                     [8., 9.],
    ///                     [6., 7.]])
    ///);
    /// ```
    pub fn select(&self, axis: Axis, indices: &[Ix]) -> Array<A, D>
    where
        A: Clone,
        S: Data,
        D: RemoveAxis,
    {
        if self.ndim() == 1 {
            // using .len_of(axis) means that we check if `axis` is in bounds too.
            let axis_len = self.len_of(axis);
            // bounds check the indices first
            if let Some(max_index) = indices.iter().cloned().max() {
                if max_index >= axis_len {
                    panic!("ndarray: index {} is out of bounds in array of len {}",
                           max_index, self.len_of(axis));
                }
            } // else: indices empty is ok
            let view = self.view().into_dimensionality::<Ix1>().unwrap();
            Array::from_iter(indices.iter().map(move |&index| {
                // Safety: bounds checked indexes
                unsafe {
                    view.uget(index).clone()
                }
            })).into_dimensionality::<D>().unwrap()
        } else {
            let mut subs = vec![self.view(); indices.len()];
            for (&i, sub) in zip(indices, &mut subs[..]) {
                sub.collapse_axis(axis, i);
            }
            if subs.is_empty() {
                let mut dim = self.raw_dim();
                dim.set_axis(axis, 0);
                unsafe { Array::from_shape_vec_unchecked(dim, vec![]) }
            } else {
                concatenate(axis, &subs).unwrap()
            }
        }
    }

    /// Return a producer and iterable that traverses over the *generalized*
    /// rows of the array. For a 2D array these are the regular rows.
    ///
    /// This is equivalent to `.lanes(Axis(n - 1))` where *n* is `self.ndim()`.
    ///
    /// For an array of dimensions *a* × *b* × *c* × ... × *l* × *m*
    /// it has *a* × *b* × *c* × ... × *l* rows each of length *m*.
    ///
    /// For example, in a 2 × 2 × 3 array, each row is 3 elements long
    /// and there are 2 × 2 = 4 rows in total.
    ///
    /// Iterator element is `ArrayView1<A>` (1D array view).
    ///
    /// ```
    /// use ndarray::arr3;
    ///
    /// let a = arr3(&[[[ 0,  1,  2],    // -- row 0, 0
    ///                 [ 3,  4,  5]],   // -- row 0, 1
    ///                [[ 6,  7,  8],    // -- row 1, 0
    ///                 [ 9, 10, 11]]]); // -- row 1, 1
    ///
    /// // `rows` will yield the four generalized rows of the array.
    /// for row in a.rows() {
    ///     /* loop body */
    /// }
    /// ```
    pub fn rows(&self) -> Lanes<'_, A, D::Smaller>
    where
        S: Data,
    {
        let mut n = self.ndim();
        if n == 0 {
            n += 1;
        }
        Lanes::new(self.view(), Axis(n - 1))
    }

    #[deprecated(note="Renamed to .rows()", since="0.15.0")]
    pub fn genrows(&self) -> Lanes<'_, A, D::Smaller>
    where
        S: Data,
    {
        self.rows()
    }

    /// Return a producer and iterable that traverses over the *generalized*
    /// rows of the array and yields mutable array views.
    ///
    /// Iterator element is `ArrayView1<A>` (1D read-write array view).
    pub fn rows_mut(&mut self) -> LanesMut<'_, A, D::Smaller>
    where
        S: DataMut,
    {
        let mut n = self.ndim();
        if n == 0 {
            n += 1;
        }
        LanesMut::new(self.view_mut(), Axis(n - 1))
    }

    #[deprecated(note="Renamed to .rows_mut()", since="0.15.0")]
    pub fn genrows_mut(&mut self) -> LanesMut<'_, A, D::Smaller>
    where
        S: DataMut,
    {
        self.rows_mut()
    }

    /// Return a producer and iterable that traverses over the *generalized*
    /// columns of the array. For a 2D array these are the regular columns.
    ///
    /// This is equivalent to `.lanes(Axis(0))`.
    ///
    /// For an array of dimensions *a* × *b* × *c* × ... × *l* × *m*
    /// it has *b* × *c* × ... × *l* × *m* columns each of length *a*.
    ///
    /// For example, in a 2 × 2 × 3 array, each column is 2 elements long
    /// and there are 2 × 3 = 6 columns in total.
    ///
    /// Iterator element is `ArrayView1<A>` (1D array view).
    ///
    /// ```
    /// use ndarray::arr3;
    ///
    /// // The generalized columns of a 3D array:
    /// // are directed along the 0th axis: 0 and 6, 1 and 7 and so on...
    /// let a = arr3(&[[[ 0,  1,  2], [ 3,  4,  5]],
    ///                [[ 6,  7,  8], [ 9, 10, 11]]]);
    ///
    /// // Here `columns` will yield the six generalized columns of the array.
    /// for row in a.columns() {
    ///     /* loop body */
    /// }
    /// ```
    pub fn columns(&self) -> Lanes<'_, A, D::Smaller>
    where
        S: Data,
    {
        Lanes::new(self.view(), Axis(0))
    }

    /// Return a producer and iterable that traverses over the *generalized*
    /// columns of the array. For a 2D array these are the regular columns.
    ///
    /// Renamed to `.columns()`
    #[deprecated(note="Renamed to .columns()", since="0.15.0")]
    pub fn gencolumns(&self) -> Lanes<'_, A, D::Smaller>
    where
        S: Data,
    {
        self.columns()
    }

    /// Return a producer and iterable that traverses over the *generalized*
    /// columns of the array and yields mutable array views.
    ///
    /// Iterator element is `ArrayView1<A>` (1D read-write array view).
    pub fn columns_mut(&mut self) -> LanesMut<'_, A, D::Smaller>
    where
        S: DataMut,
    {
        LanesMut::new(self.view_mut(), Axis(0))
    }

    /// Return a producer and iterable that traverses over the *generalized*
    /// columns of the array and yields mutable array views.
    ///
    /// Renamed to `.columns_mut()`
    #[deprecated(note="Renamed to .columns_mut()", since="0.15.0")]
    pub fn gencolumns_mut(&mut self) -> LanesMut<'_, A, D::Smaller>
    where
        S: DataMut,
    {
        self.columns_mut()
    }

    /// Return a producer and iterable that traverses over all 1D lanes
    /// pointing in the direction of `axis`.
    ///
    /// When pointing in the direction of the first axis, they are *columns*,
    /// in the direction of the last axis *rows*; in general they are all
    /// *lanes* and are one dimensional.
    ///
    /// Iterator element is `ArrayView1<A>` (1D array view).
    ///
    /// ```
    /// use ndarray::{arr3, aview1, Axis};
    ///
    /// let a = arr3(&[[[ 0,  1,  2],
    ///                 [ 3,  4,  5]],
    ///                [[ 6,  7,  8],
    ///                 [ 9, 10, 11]]]);
    ///
    /// let inner0 = a.lanes(Axis(0));
    /// let inner1 = a.lanes(Axis(1));
    /// let inner2 = a.lanes(Axis(2));
    ///
    /// // The first lane for axis 0 is [0, 6]
    /// assert_eq!(inner0.into_iter().next().unwrap(), aview1(&[0, 6]));
    /// // The first lane for axis 1 is [0, 3]
    /// assert_eq!(inner1.into_iter().next().unwrap(), aview1(&[0, 3]));
    /// // The first lane for axis 2 is [0, 1, 2]
    /// assert_eq!(inner2.into_iter().next().unwrap(), aview1(&[0, 1, 2]));
    /// ```
    pub fn lanes(&self, axis: Axis) -> Lanes<'_, A, D::Smaller>
    where
        S: Data,
    {
        Lanes::new(self.view(), axis)
    }

    /// Return a producer and iterable that traverses over all 1D lanes
    /// pointing in the direction of `axis`.
    ///
    /// Iterator element is `ArrayViewMut1<A>` (1D read-write array view).
    pub fn lanes_mut(&mut self, axis: Axis) -> LanesMut<'_, A, D::Smaller>
    where
        S: DataMut,
    {
        LanesMut::new(self.view_mut(), axis)
    }

    /// Return an iterator that traverses over the outermost dimension
    /// and yields each subview.
    ///
    /// This is equivalent to `.axis_iter(Axis(0))`.
    ///
    /// Iterator element is `ArrayView<A, D::Smaller>` (read-only array view).
    #[allow(deprecated)]
    pub fn outer_iter(&self) -> AxisIter<'_, A, D::Smaller>
    where
        S: Data,
        D: RemoveAxis,
    {
        self.view().into_outer_iter()
    }

    /// Return an iterator that traverses over the outermost dimension
    /// and yields each subview.
    ///
    /// This is equivalent to `.axis_iter_mut(Axis(0))`.
    ///
    /// Iterator element is `ArrayViewMut<A, D::Smaller>` (read-write array view).
    #[allow(deprecated)]
    pub fn outer_iter_mut(&mut self) -> AxisIterMut<'_, A, D::Smaller>
    where
        S: DataMut,
        D: RemoveAxis,
    {
        self.view_mut().into_outer_iter()
    }

    /// Return an iterator that traverses over `axis`
    /// and yields each subview along it.
    ///
    /// For example, in a 3 × 4 × 5 array, with `axis` equal to `Axis(2)`,
    /// the iterator element
    /// is a 3 × 4 subview (and there are 5 in total), as shown
    /// in the picture below.
    ///
    /// Iterator element is `ArrayView<A, D::Smaller>` (read-only array view).
    ///
    /// See [*Subviews*](#subviews) for full documentation.
    ///
    /// **Panics** if `axis` is out of bounds.
    ///
    /// <img src="https://rust-ndarray.github.io/ndarray/images/axis_iter_3_4_5.svg" height="250px">
    pub fn axis_iter(&self, axis: Axis) -> AxisIter<'_, A, D::Smaller>
    where
        S: Data,
        D: RemoveAxis,
    {
        AxisIter::new(self.view(), axis)
    }

    /// Return an iterator that traverses over `axis`
    /// and yields each mutable subview along it.
    ///
    /// Iterator element is `ArrayViewMut<A, D::Smaller>`
    /// (read-write array view).
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn axis_iter_mut(&mut self, axis: Axis) -> AxisIterMut<'_, A, D::Smaller>
    where
        S: DataMut,
        D: RemoveAxis,
    {
        AxisIterMut::new(self.view_mut(), axis)
    }

    /// Return an iterator that traverses over `axis` by chunks of `size`,
    /// yielding non-overlapping views along that axis.
    ///
    /// Iterator element is `ArrayView<A, D>`
    ///
    /// The last view may have less elements if `size` does not divide
    /// the axis' dimension.
    ///
    /// **Panics** if `axis` is out of bounds or if `size` is zero.
    ///
    /// ```
    /// use ndarray::Array;
    /// use ndarray::{arr3, Axis};
    ///
    /// let a = Array::from_iter(0..28).into_shape((2, 7, 2)).unwrap();
    /// let mut iter = a.axis_chunks_iter(Axis(1), 2);
    ///
    /// // first iteration yields a 2 × 2 × 2 view
    /// assert_eq!(iter.next().unwrap(),
    ///            arr3(&[[[ 0,  1], [ 2, 3]],
    ///                   [[14, 15], [16, 17]]]));
    ///
    /// // however the last element is a 2 × 1 × 2 view since 7 % 2 == 1
    /// assert_eq!(iter.next_back().unwrap(), arr3(&[[[12, 13]],
    ///                                              [[26, 27]]]));
    /// ```
    pub fn axis_chunks_iter(&self, axis: Axis, size: usize) -> AxisChunksIter<'_, A, D>
    where
        S: Data,
    {
        AxisChunksIter::new(self.view(), axis, size)
    }

    /// Return an iterator that traverses over `axis` by chunks of `size`,
    /// yielding non-overlapping read-write views along that axis.
    ///
    /// Iterator element is `ArrayViewMut<A, D>`
    ///
    /// **Panics** if `axis` is out of bounds or if `size` is zero.
    pub fn axis_chunks_iter_mut(&mut self, axis: Axis, size: usize) -> AxisChunksIterMut<'_, A, D>
    where
        S: DataMut,
    {
        AxisChunksIterMut::new(self.view_mut(), axis, size)
    }

    /// Return an exact chunks producer (and iterable).
    ///
    /// It produces the whole chunks of a given n-dimensional chunk size,
    /// skipping the remainder along each dimension that doesn't fit evenly.
    ///
    /// The produced element is a `ArrayView<A, D>` with exactly the dimension
    /// `chunk_size`.
    ///
    /// **Panics** if any dimension of `chunk_size` is zero<br>
    /// (**Panics** if `D` is `IxDyn` and `chunk_size` does not match the
    /// number of array axes.)
    pub fn exact_chunks<E>(&self, chunk_size: E) -> ExactChunks<'_, A, D>
    where
        E: IntoDimension<Dim = D>,
        S: Data,
    {
        ExactChunks::new(self.view(), chunk_size)
    }

    /// Return an exact chunks producer (and iterable).
    ///
    /// It produces the whole chunks of a given n-dimensional chunk size,
    /// skipping the remainder along each dimension that doesn't fit evenly.
    ///
    /// The produced element is a `ArrayViewMut<A, D>` with exactly
    /// the dimension `chunk_size`.
    ///
    /// **Panics** if any dimension of `chunk_size` is zero<br>
    /// (**Panics** if `D` is `IxDyn` and `chunk_size` does not match the
    /// number of array axes.)
    ///
    /// ```rust
    /// use ndarray::Array;
    /// use ndarray::arr2;
    /// let mut a = Array::zeros((6, 7));
    ///
    /// // Fill each 2 × 2 chunk with the index of where it appeared in iteration
    /// for (i, mut chunk) in a.exact_chunks_mut((2, 2)).into_iter().enumerate() {
    ///     chunk.fill(i);
    /// }
    ///
    /// // The resulting array is:
    /// assert_eq!(
    ///   a,
    ///   arr2(&[[0, 0, 1, 1, 2, 2, 0],
    ///          [0, 0, 1, 1, 2, 2, 0],
    ///          [3, 3, 4, 4, 5, 5, 0],
    ///          [3, 3, 4, 4, 5, 5, 0],
    ///          [6, 6, 7, 7, 8, 8, 0],
    ///          [6, 6, 7, 7, 8, 8, 0]]));
    /// ```
    pub fn exact_chunks_mut<E>(&mut self, chunk_size: E) -> ExactChunksMut<'_, A, D>
    where
        E: IntoDimension<Dim = D>,
        S: DataMut,
    {
        ExactChunksMut::new(self.view_mut(), chunk_size)
    }

    /// Return a window producer and iterable.
    ///
    /// The windows are all distinct overlapping views of size `window_size`
    /// that fit into the array's shape.
    ///
    /// This produces no elements if the window size is larger than the actual array size along any
    /// axis.
    ///
    /// The produced element is an `ArrayView<A, D>` with exactly the dimension
    /// `window_size`.
    ///
    /// **Panics** if any dimension of `window_size` is zero.<br>
    /// (**Panics** if `D` is `IxDyn` and `window_size` does not match the
    /// number of array axes.)
    ///
    /// This is an illustration of the 2×2 windows in a 3×4 array:
    ///
    /// ```text
    ///          ──▶ Axis(1)
    ///
    ///      │   ┏━━━━━┳━━━━━┱─────┬─────┐   ┌─────┲━━━━━┳━━━━━┱─────┐   ┌─────┬─────┲━━━━━┳━━━━━┓
    ///      ▼   ┃ a₀₀ ┃ a₀₁ ┃     │     │   │     ┃ a₀₁ ┃ a₀₂ ┃     │   │     │     ┃ a₀₂ ┃ a₀₃ ┃
    /// Axis(0)  ┣━━━━━╋━━━━━╉─────┼─────┤   ├─────╊━━━━━╋━━━━━╉─────┤   ├─────┼─────╊━━━━━╋━━━━━┫
    ///          ┃ a₁₀ ┃ a₁₁ ┃     │     │   │     ┃ a₁₁ ┃ a₁₂ ┃     │   │     │     ┃ a₁₂ ┃ a₁₃ ┃
    ///          ┡━━━━━╇━━━━━╃─────┼─────┤   ├─────╄━━━━━╇━━━━━╃─────┤   ├─────┼─────╄━━━━━╇━━━━━┩
    ///          │     │     │     │     │   │     │     │     │     │   │     │     │     │     │
    ///          └─────┴─────┴─────┴─────┘   └─────┴─────┴─────┴─────┘   └─────┴─────┴─────┴─────┘
    ///
    ///          ┌─────┬─────┬─────┬─────┐   ┌─────┬─────┬─────┬─────┐   ┌─────┬─────┬─────┬─────┐
    ///          │     │     │     │     │   │     │     │     │     │   │     │     │     │     │
    ///          ┢━━━━━╈━━━━━╅─────┼─────┤   ├─────╆━━━━━╈━━━━━╅─────┤   ├─────┼─────╆━━━━━╈━━━━━┪
    ///          ┃ a₁₀ ┃ a₁₁ ┃     │     │   │     ┃ a₁₁ ┃ a₁₂ ┃     │   │     │     ┃ a₁₂ ┃ a₁₃ ┃
    ///          ┣━━━━━╋━━━━━╉─────┼─────┤   ├─────╊━━━━━╋━━━━━╉─────┤   ├─────┼─────╊━━━━━╋━━━━━┫
    ///          ┃ a₂₀ ┃ a₂₁ ┃     │     │   │     ┃ a₂₁ ┃ a₂₂ ┃     │   │     │     ┃ a₂₂ ┃ a₂₃ ┃
    ///          ┗━━━━━┻━━━━━┹─────┴─────┘   └─────┺━━━━━┻━━━━━┹─────┘   └─────┴─────┺━━━━━┻━━━━━┛
    /// ```
    pub fn windows<E>(&self, window_size: E) -> Windows<'_, A, D>
    where
        E: IntoDimension<Dim = D>,
        S: Data,
    {
        Windows::new(self.view(), window_size)
    }

    /// Returns a producer which traverses over all windows of a given length along an axis.
    ///
    /// The windows are all distinct, possibly-overlapping views. The shape of each window
    /// is the shape of `self`, with the length of `axis` replaced with `window_size`.
    ///
    /// **Panics** if `axis` is out-of-bounds or if `window_size` is zero.
    ///
    /// ```
    /// use ndarray::{Array3, Axis, s};
    ///
    /// let arr = Array3::from_shape_fn([4, 5, 2], |(i, j, k)| i * 100 + j * 10 + k);
    /// let correct = vec![
    ///     arr.slice(s![.., 0..3, ..]),
    ///     arr.slice(s![.., 1..4, ..]),
    ///     arr.slice(s![.., 2..5, ..]),
    /// ];
    /// for (window, correct) in arr.axis_windows(Axis(1), 3).into_iter().zip(&correct) {
    ///     assert_eq!(window, correct);
    ///     assert_eq!(window.shape(), &[4, 3, 2]);
    /// }
    /// ```
    pub fn axis_windows(&self, axis: Axis, window_size: usize) -> Windows<'_, A, D>
    where
        S: Data,
    {
        let axis_index = axis.index();

        ndassert!(
            axis_index < self.ndim(),
            concat!(
                "Window axis {} does not match array dimension {} ",
                "(with array of shape {:?})"
            ),
            axis_index,
            self.ndim(),
            self.shape()
        );

        let mut size = self.raw_dim();
        size[axis_index] = window_size;

        Windows::new(self.view(), size)
    }

    // Return (length, stride) for diagonal
    fn diag_params(&self) -> (Ix, Ixs) {
        /* empty shape has len 1 */
        let len = self.dim.slice().iter().cloned().min().unwrap_or(1);
        let stride = self.strides().iter().sum();
        (len, stride)
    }

    /// Return a view of the diagonal elements of the array.
    ///
    /// The diagonal is simply the sequence indexed by *(0, 0, .., 0)*,
    /// *(1, 1, ..., 1)* etc as long as all axes have elements.
    pub fn diag(&self) -> ArrayView1<'_, A>
    where
        S: Data,
    {
        self.view().into_diag()
    }

    /// Return a read-write view over the diagonal elements of the array.
    pub fn diag_mut(&mut self) -> ArrayViewMut1<'_, A>
    where
        S: DataMut,
    {
        self.view_mut().into_diag()
    }

    /// Return the diagonal as a one-dimensional array.
    pub fn into_diag(self) -> ArrayBase<S, Ix1> {
        let (len, stride) = self.diag_params();
        // safe because new len stride allows access to a subset of the current elements
        unsafe {
            self.with_strides_dim(Ix1(stride as Ix), Ix1(len))
        }
    }

    /// Try to make the array unshared.
    ///
    /// This is equivalent to `.ensure_unique()` if `S: DataMut`.
    ///
    /// This method is mostly only useful with unsafe code.
    fn try_ensure_unique(&mut self)
    where
        S: RawDataMut,
    {
        debug_assert!(self.pointer_is_inbounds());
        S::try_ensure_unique(self);
        debug_assert!(self.pointer_is_inbounds());
    }

    /// Make the array unshared.
    ///
    /// This method is mostly only useful with unsafe code.
    fn ensure_unique(&mut self)
    where
        S: DataMut,
    {
        debug_assert!(self.pointer_is_inbounds());
        S::ensure_unique(self);
        debug_assert!(self.pointer_is_inbounds());
    }

    /// Return `true` if the array data is laid out in contiguous “C order” in
    /// memory (where the last index is the most rapidly varying).
    ///
    /// Return `false` otherwise, i.e. the array is possibly not
    /// contiguous in memory, it has custom strides, etc.
    pub fn is_standard_layout(&self) -> bool {
        dimension::is_layout_c(&self.dim, &self.strides)
    }

    /// Return true if the array is known to be contiguous.
    pub(crate) fn is_contiguous(&self) -> bool {
        D::is_contiguous(&self.dim, &self.strides)
    }

    /// Return a standard-layout array containing the data, cloning if
    /// necessary.
    ///
    /// If `self` is in standard layout, a COW view of the data is returned
    /// without cloning. Otherwise, the data is cloned, and the returned array
    /// owns the cloned data.
    ///
    /// ```
    /// use ndarray::Array2;
    ///
    /// let standard = Array2::<f64>::zeros((3, 4));
    /// assert!(standard.is_standard_layout());
    /// let cow_view = standard.as_standard_layout();
    /// assert!(cow_view.is_view());
    /// assert!(cow_view.is_standard_layout());
    ///
    /// let fortran = standard.reversed_axes();
    /// assert!(!fortran.is_standard_layout());
    /// let cow_owned = fortran.as_standard_layout();
    /// assert!(cow_owned.is_owned());
    /// assert!(cow_owned.is_standard_layout());
    /// ```
    pub fn as_standard_layout(&self) -> CowArray<'_, A, D>
    where
        S: Data<Elem = A>,
        A: Clone,
    {
        if self.is_standard_layout() {
            CowArray::from(self.view())
        } else {
            let v = crate::iterators::to_vec_mapped(self.iter(), A::clone);
            let dim = self.dim.clone();
            debug_assert_eq!(v.len(), dim.size());

            unsafe {
                // Safe because the shape and element type are from the existing array
                // and the strides are the default strides.
                CowArray::from(Array::from_shape_vec_unchecked(dim, v))
            }
        }
    }

    /// Return a pointer to the first element in the array.
    ///
    /// Raw access to array elements needs to follow the strided indexing
    /// scheme: an element at multi-index *I* in an array with strides *S* is
    /// located at offset
    ///
    /// *Σ<sub>0 ≤ k < d</sub> I<sub>k</sub> × S<sub>k</sub>*
    ///
    /// where *d* is `self.ndim()`.
    #[inline(always)]
    pub fn as_ptr(&self) -> *const A {
        self.ptr.as_ptr() as *const A
    }

    /// Return a mutable pointer to the first element in the array.
    ///
    /// This method attempts to unshare the data. If `S: DataMut`, then the
    /// data is guaranteed to be uniquely held on return.
    ///
    /// # Warning
    ///
    /// When accessing elements through this pointer, make sure to use strides
    /// obtained *after* calling this method, since the process of unsharing
    /// the data may change the strides.
    #[inline(always)]
    pub fn as_mut_ptr(&mut self) -> *mut A
    where
        S: RawDataMut,
    {
        self.try_ensure_unique(); // for ArcArray
        self.ptr.as_ptr()
    }

    /// Return a raw view of the array.
    #[inline]
    pub fn raw_view(&self) -> RawArrayView<A, D> {
        unsafe { RawArrayView::new(self.ptr, self.dim.clone(), self.strides.clone()) }
    }

    /// Return a raw mutable view of the array.
    ///
    /// This method attempts to unshare the data. If `S: DataMut`, then the
    /// data is guaranteed to be uniquely held on return.
    #[inline]
    pub fn raw_view_mut(&mut self) -> RawArrayViewMut<A, D>
    where
        S: RawDataMut,
    {
        self.try_ensure_unique(); // for ArcArray
        unsafe { RawArrayViewMut::new(self.ptr, self.dim.clone(), self.strides.clone()) }
    }

    /// Return a raw mutable view of the array.
    ///
    /// Safety: The caller must ensure that the owned array is unshared when this is called
    #[inline]
    pub(crate) unsafe fn raw_view_mut_unchecked(&mut self) -> RawArrayViewMut<A, D>
    where
        S: DataOwned,
    {
        RawArrayViewMut::new(self.ptr, self.dim.clone(), self.strides.clone())
    }

    /// Return the array’s data as a slice, if it is contiguous and in standard order.
    /// Return `None` otherwise.
    ///
    /// If this function returns `Some(_)`, then the element order in the slice
    /// corresponds to the logical order of the array’s elements.
    pub fn as_slice(&self) -> Option<&[A]>
    where
        S: Data,
    {
        if self.is_standard_layout() {
            unsafe { Some(slice::from_raw_parts(self.ptr.as_ptr(), self.len())) }
        } else {
            None
        }
    }

    /// Return the array’s data as a slice, if it is contiguous and in standard order.
    /// Return `None` otherwise.
    pub fn as_slice_mut(&mut self) -> Option<&mut [A]>
    where
        S: DataMut,
    {
        if self.is_standard_layout() {
            self.ensure_unique();
            unsafe { Some(slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len())) }
        } else {
            None
        }
    }

    /// Return the array’s data as a slice if it is contiguous,
    /// return `None` otherwise.
    ///
    /// If this function returns `Some(_)`, then the elements in the slice
    /// have whatever order the elements have in memory.
    pub fn as_slice_memory_order(&self) -> Option<&[A]>
    where
        S: Data,
    {
        if self.is_contiguous() {
            let offset = offset_from_low_addr_ptr_to_logical_ptr(&self.dim, &self.strides);
            unsafe {
                Some(slice::from_raw_parts(
                    self.ptr.sub(offset).as_ptr(),
                    self.len(),
                ))
            }
        } else {
            None
        }
    }

    /// Return the array’s data as a slice if it is contiguous,
    /// return `None` otherwise.
    ///
    /// In the contiguous case, in order to return a unique reference, this
    /// method unshares the data if necessary, but it preserves the existing
    /// strides.
    pub fn as_slice_memory_order_mut(&mut self) -> Option<&mut [A]>
    where
        S: DataMut,
    {
        self.try_as_slice_memory_order_mut().ok()
    }

    /// Return the array’s data as a slice if it is contiguous, otherwise
    /// return `self` in the `Err` variant.
    pub(crate) fn try_as_slice_memory_order_mut(&mut self) -> Result<&mut [A], &mut Self>
    where
        S: DataMut,
    {
        if self.is_contiguous() {
            self.ensure_unique();
            let offset = offset_from_low_addr_ptr_to_logical_ptr(&self.dim, &self.strides);
            unsafe {
                Ok(slice::from_raw_parts_mut(
                    self.ptr.sub(offset).as_ptr(),
                    self.len(),
                ))
            }
        } else {
            Err(self)
        }
    }

    /// Transform the array into `new_shape`; any shape with the same number of elements is
    /// accepted.
    ///
    /// `order` specifies the *logical* order in which the array is to be read and reshaped.
    /// The array is returned as a `CowArray`; a view if possible, otherwise an owned array.
    ///
    /// For example, when starting from the one-dimensional sequence 1 2 3 4 5 6, it would be
    /// understood as a 2 x 3 array in row major ("C") order this way:
    ///
    /// ```text
    /// 1 2 3
    /// 4 5 6
    /// ```
    ///
    /// and as 2 x 3 in column major ("F") order this way:
    ///
    /// ```text
    /// 1 3 5
    /// 2 4 6
    /// ```
    ///
    /// This example should show that any time we "reflow" the elements in the array to a different
    /// number of rows and columns (or more axes if applicable), it is important to pick an index
    /// ordering, and that's the reason for the function parameter for `order`.
    ///
    /// **Errors** if the new shape doesn't have the same number of elements as the array's current
    /// shape.
    ///
    /// ```
    /// use ndarray::array;
    /// use ndarray::Order;
    ///
    /// assert!(
    ///     array![1., 2., 3., 4., 5., 6.].to_shape(((2, 3), Order::RowMajor)).unwrap()
    ///     == array![[1., 2., 3.],
    ///               [4., 5., 6.]]
    /// );
    ///
    /// assert!(
    ///     array![1., 2., 3., 4., 5., 6.].to_shape(((2, 3), Order::ColumnMajor)).unwrap()
    ///     == array![[1., 3., 5.],
    ///               [2., 4., 6.]]
    /// );
    /// ```
    pub fn to_shape<E>(&self, new_shape: E) -> Result<CowArray<'_, A, E::Dim>, ShapeError>
    where
        E: ShapeArg,
        A: Clone,
        S: Data,
    {
        let (shape, order) = new_shape.into_shape_and_order();
        self.to_shape_order(shape, order.unwrap_or(Order::RowMajor))
    }

    fn to_shape_order<E>(&self, shape: E, order: Order)
        -> Result<CowArray<'_, A, E>, ShapeError>
    where
        E: Dimension,
        A: Clone,
        S: Data,
    {
        let len = self.dim.size();
        if size_of_shape_checked(&shape) != Ok(len) {
            return Err(error::incompatible_shapes(&self.dim, &shape));
        }

        // Create a view if the length is 0, safe because the array and new shape is empty.
        if len == 0 {
            unsafe {
                return Ok(CowArray::from(ArrayView::from_shape_ptr(shape, self.as_ptr())));
            }
        }

        // Try to reshape the array as a view into the existing data
        match reshape_dim(&self.dim, &self.strides, &shape, order) {
            Ok(to_strides) => unsafe {
                return Ok(CowArray::from(ArrayView::new(self.ptr, shape, to_strides)));
            }
            Err(err) if err.kind() == ErrorKind::IncompatibleShape => {
                return Err(error::incompatible_shapes(&self.dim, &shape));
            }
            _otherwise => { }
        }

        // otherwise create a new array and copy the elements
        unsafe {
            let (shape, view) = match order {
                Order::RowMajor => (shape.set_f(false), self.view()),
                Order::ColumnMajor => (shape.set_f(true), self.t()),
            };
            Ok(CowArray::from(Array::from_shape_trusted_iter_unchecked(
                        shape, view.into_iter(), A::clone)))
        }
    }

    /// Transform the array into `shape`; any shape with the same number of
    /// elements is accepted, but the source array or view must be in standard
    /// or column-major (Fortran) layout.
    ///
    /// **Errors** if the shapes don't have the same number of elements.<br>
    /// **Errors** if the input array is not c- or f-contiguous.
    ///
    /// ```
    /// use ndarray::{aview1, aview2};
    ///
    /// assert!(
    ///     aview1(&[1., 2., 3., 4.]).into_shape((2, 2)).unwrap()
    ///     == aview2(&[[1., 2.],
    ///                 [3., 4.]])
    /// );
    /// ```
    pub fn into_shape<E>(self, shape: E) -> Result<ArrayBase<S, E::Dim>, ShapeError>
    where
        E: IntoDimension,
    {
        let shape = shape.into_dimension();
        if size_of_shape_checked(&shape) != Ok(self.dim.size()) {
            return Err(error::incompatible_shapes(&self.dim, &shape));
        }
        // Check if contiguous, if not => copy all, else just adapt strides
        unsafe {
            // safe because arrays are contiguous and len is unchanged
            if self.is_standard_layout() {
                Ok(self.with_strides_dim(shape.default_strides(), shape))
            } else if self.ndim() > 1 && self.raw_view().reversed_axes().is_standard_layout() {
                Ok(self.with_strides_dim(shape.fortran_strides(), shape))
            } else {
                Err(error::from_kind(error::ErrorKind::IncompatibleLayout))
            }
        }
    }

    /// *Note: Reshape is for `ArcArray` only. Use `.into_shape()` for
    /// other arrays and array views.*
    ///
    /// Transform the array into `shape`; any shape with the same number of
    /// elements is accepted.
    ///
    /// May clone all elements if needed to arrange elements in standard
    /// layout (and break sharing).
    ///
    /// **Panics** if shapes are incompatible.
    ///
    /// ```
    /// use ndarray::{rcarr1, rcarr2};
    ///
    /// assert!(
    ///     rcarr1(&[1., 2., 3., 4.]).reshape((2, 2))
    ///     == rcarr2(&[[1., 2.],
    ///                 [3., 4.]])
    /// );
    /// ```
    pub fn reshape<E>(&self, shape: E) -> ArrayBase<S, E::Dim>
    where
        S: DataShared + DataOwned,
        A: Clone,
        E: IntoDimension,
    {
        let shape = shape.into_dimension();
        if size_of_shape_checked(&shape) != Ok(self.dim.size()) {
            panic!(
                "ndarray: incompatible shapes in reshape, attempted from: {:?}, to: {:?}",
                self.dim.slice(),
                shape.slice()
            )
        }
        // Check if contiguous, if not => copy all, else just adapt strides
        if self.is_standard_layout() {
            let cl = self.clone();
            // safe because array is contiguous and shape has equal number of elements
            unsafe {
                cl.with_strides_dim(shape.default_strides(), shape)
            }
        } else {
            let v = self.iter().cloned().collect::<Vec<A>>();
            unsafe { ArrayBase::from_shape_vec_unchecked(shape, v) }
        }
    }

    /// Convert any array or array view to a dynamic dimensional array or
    /// array view (respectively).
    ///
    /// ```
    /// use ndarray::{arr2, ArrayD};
    ///
    /// let array: ArrayD<i32> = arr2(&[[1, 2],
    ///                                 [3, 4]]).into_dyn();
    /// ```
    pub fn into_dyn(self) -> ArrayBase<S, IxDyn> {
        // safe because new dims equivalent
        unsafe {
            ArrayBase::from_data_ptr(self.data, self.ptr)
                .with_strides_dim(self.strides.into_dyn(), self.dim.into_dyn())
        }
    }

    /// Convert an array or array view to another with the same type, but different dimensionality
    /// type. Errors if the dimensions don't agree (the number of axes must match).
    ///
    /// Note that conversion to a dynamic dimensional array will never fail (and is equivalent to
    /// the `into_dyn` method).
    ///
    /// ```
    /// use ndarray::{ArrayD, Ix2, IxDyn};
    ///
    /// // Create a dynamic dimensionality array and convert it to an Array2
    /// // (Ix2 dimension type).
    ///
    /// let array = ArrayD::<f64>::zeros(IxDyn(&[10, 10]));
    ///
    /// assert!(array.into_dimensionality::<Ix2>().is_ok());
    /// ```
    pub fn into_dimensionality<D2>(self) -> Result<ArrayBase<S, D2>, ShapeError>
    where
        D2: Dimension,
    {
        unsafe {
            if D::NDIM == D2::NDIM {
                // safe because D == D2
                let dim = unlimited_transmute::<D, D2>(self.dim);
                let strides = unlimited_transmute::<D, D2>(self.strides);
                return Ok(ArrayBase::from_data_ptr(self.data, self.ptr)
                            .with_strides_dim(strides, dim));
            } else if D::NDIM == None || D2::NDIM == None { // one is dynamic dim
                // safe because dim, strides are equivalent under a different type
                if let Some(dim) = D2::from_dimension(&self.dim) {
                    if let Some(strides) = D2::from_dimension(&self.strides) {
                        return Ok(self.with_strides_dim(strides, dim));
                    }
                }
            }
        }
        Err(ShapeError::from_kind(ErrorKind::IncompatibleShape))
    }

    /// Act like a larger size and/or shape array by *broadcasting*
    /// into a larger shape, if possible.
    ///
    /// Return `None` if shapes can not be broadcast together.
    ///
    /// ***Background***
    ///
    ///  * Two axes are compatible if they are equal, or one of them is 1.
    ///  * In this instance, only the axes of the smaller side (self) can be 1.
    ///
    /// Compare axes beginning with the *last* axis of each shape.
    ///
    /// For example (1, 2, 4) can be broadcast into (7, 6, 2, 4)
    /// because its axes are either equal or 1 (or missing);
    /// while (2, 2) can *not* be broadcast into (2, 4).
    ///
    /// The implementation creates a view with strides set to zero for the
    /// axes that are to be repeated.
    ///
    /// The broadcasting documentation for Numpy has more information.
    ///
    /// ```
    /// use ndarray::{aview1, aview2};
    ///
    /// assert!(
    ///     aview1(&[1., 0.]).broadcast((10, 2)).unwrap()
    ///     == aview2(&[[1., 0.]; 10])
    /// );
    /// ```
    pub fn broadcast<E>(&self, dim: E) -> Option<ArrayView<'_, A, E::Dim>>
    where
        E: IntoDimension,
        S: Data,
    {
        /// Return new stride when trying to grow `from` into shape `to`
        ///
        /// Broadcasting works by returning a "fake stride" where elements
        /// to repeat are in axes with 0 stride, so that several indexes point
        /// to the same element.
        ///
        /// **Note:** Cannot be used for mutable iterators, since repeating
        /// elements would create aliasing pointers.
        fn upcast<D: Dimension, E: Dimension>(to: &D, from: &E, stride: &E) -> Option<D> {
            // Make sure the product of non-zero axis lengths does not exceed
            // `isize::MAX`. This is the only safety check we need to perform
            // because all the other constraints of `ArrayBase` are guaranteed
            // to be met since we're starting from a valid `ArrayBase`.
            let _ = size_of_shape_checked(to).ok()?;

            let mut new_stride = to.clone();
            // begin at the back (the least significant dimension)
            // size of the axis has to either agree or `from` has to be 1
            if to.ndim() < from.ndim() {
                return None;
            }

            {
                let mut new_stride_iter = new_stride.slice_mut().iter_mut().rev();
                for ((er, es), dr) in from
                    .slice()
                    .iter()
                    .rev()
                    .zip(stride.slice().iter().rev())
                    .zip(new_stride_iter.by_ref())
                {
                    /* update strides */
                    if *dr == *er {
                        /* keep stride */
                        *dr = *es;
                    } else if *er == 1 {
                        /* dead dimension, zero stride */
                        *dr = 0
                    } else {
                        return None;
                    }
                }

                /* set remaining strides to zero */
                for dr in new_stride_iter {
                    *dr = 0;
                }
            }
            Some(new_stride)
        }
        let dim = dim.into_dimension();

        // Note: zero strides are safe precisely because we return an read-only view
        let broadcast_strides = match upcast(&dim, &self.dim, &self.strides) {
            Some(st) => st,
            None => return None,
        };
        unsafe { Some(ArrayView::new(self.ptr, dim, broadcast_strides)) }
    }

    /// For two arrays or views, find their common shape if possible and
    /// broadcast them as array views into that shape.
    ///
    /// Return `ShapeError` if their shapes can not be broadcast together.
    #[allow(clippy::type_complexity)]
    pub(crate) fn broadcast_with<'a, 'b, B, S2, E>(&'a self, other: &'b ArrayBase<S2, E>) ->
        Result<(ArrayView<'a, A, DimMaxOf<D, E>>, ArrayView<'b, B, DimMaxOf<D, E>>), ShapeError>
    where
        S: Data<Elem=A>,
        S2: Data<Elem=B>,
        D: Dimension + DimMax<E>,
        E: Dimension,
    {
        let shape = co_broadcast::<D, E, <D as DimMax<E>>::Output>(&self.dim, &other.dim)?;
        let view1 = if shape.slice() == self.dim.slice() {
            self.view().into_dimensionality::<<D as DimMax<E>>::Output>().unwrap()
        } else if let Some(view1) = self.broadcast(shape.clone()) {
            view1
        } else {
            return Err(from_kind(ErrorKind::IncompatibleShape))
        };
        let view2 = if shape.slice() == other.dim.slice() {
            other.view().into_dimensionality::<<D as DimMax<E>>::Output>().unwrap()
        } else if let Some(view2) = other.broadcast(shape) {
            view2
        } else {
            return Err(from_kind(ErrorKind::IncompatibleShape))
        };
        Ok((view1, view2))
    }

    /// Swap axes `ax` and `bx`.
    ///
    /// This does not move any data, it just adjusts the array’s dimensions
    /// and strides.
    ///
    /// **Panics** if the axes are out of bounds.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let mut a = arr2(&[[1., 2., 3.]]);
    /// a.swap_axes(0, 1);
    /// assert!(
    ///     a == arr2(&[[1.], [2.], [3.]])
    /// );
    /// ```
    pub fn swap_axes(&mut self, ax: usize, bx: usize) {
        self.dim.slice_mut().swap(ax, bx);
        self.strides.slice_mut().swap(ax, bx);
    }

    /// Permute the axes.
    ///
    /// This does not move any data, it just adjusts the array’s dimensions
    /// and strides.
    ///
    /// *i* in the *j*-th place in the axes sequence means `self`'s *i*-th axis
    /// becomes `self.permuted_axes()`'s *j*-th axis
    ///
    /// **Panics** if any of the axes are out of bounds, if an axis is missing,
    /// or if an axis is repeated more than once.
    ///
    /// # Examples
    ///
    /// ```
    /// use ndarray::{arr2, Array3};
    ///
    /// let a = arr2(&[[0, 1], [2, 3]]);
    /// assert_eq!(a.view().permuted_axes([1, 0]), a.t());
    ///
    /// let b = Array3::<u8>::zeros((1, 2, 3));
    /// assert_eq!(b.permuted_axes([1, 0, 2]).shape(), &[2, 1, 3]);
    /// ```
    pub fn permuted_axes<T>(self, axes: T) -> ArrayBase<S, D>
    where
        T: IntoDimension<Dim = D>,
    {
        let axes = axes.into_dimension();
        // Ensure that each axis is used exactly once.
        let mut usage_counts = D::zeros(self.ndim());
        for axis in axes.slice() {
            usage_counts[*axis] += 1;
        }
        for count in usage_counts.slice() {
            assert_eq!(*count, 1, "each axis must be listed exactly once");
        }
        // Determine the new shape and strides.
        let mut new_dim = usage_counts; // reuse to avoid an allocation
        let mut new_strides = D::zeros(self.ndim());
        {
            let dim = self.dim.slice();
            let strides = self.strides.slice();
            for (new_axis, &axis) in axes.slice().iter().enumerate() {
                new_dim[new_axis] = dim[axis];
                new_strides[new_axis] = strides[axis];
            }
        }
        // safe because axis invariants are checked above; they are a permutation of the old
        unsafe {
            self.with_strides_dim(new_strides, new_dim)
        }
    }

    /// Transpose the array by reversing axes.
    ///
    /// Transposition reverses the order of the axes (dimensions and strides)
    /// while retaining the same data.
    pub fn reversed_axes(mut self) -> ArrayBase<S, D> {
        self.dim.slice_mut().reverse();
        self.strides.slice_mut().reverse();
        self
    }

    /// Return a transposed view of the array.
    ///
    /// This is a shorthand for `self.view().reversed_axes()`.
    ///
    /// See also the more general methods `.reversed_axes()` and `.swap_axes()`.
    pub fn t(&self) -> ArrayView<'_, A, D>
    where
        S: Data,
    {
        self.view().reversed_axes()
    }

    /// Return an iterator over the length and stride of each axis.
    pub fn axes(&self) -> Axes<'_, D> {
        axes_of(&self.dim, &self.strides)
    }

    /*
    /// Return the axis with the least stride (by absolute value)
    pub fn min_stride_axis(&self) -> Axis {
        self.dim.min_stride_axis(&self.strides)
    }
    */

    /// Return the axis with the greatest stride (by absolute value),
    /// preferring axes with len > 1.
    pub fn max_stride_axis(&self) -> Axis {
        self.dim.max_stride_axis(&self.strides)
    }

    /// Reverse the stride of `axis`.
    ///
    /// ***Panics*** if the axis is out of bounds.
    pub fn invert_axis(&mut self, axis: Axis) {
        unsafe {
            let s = self.strides.axis(axis) as Ixs;
            let m = self.dim.axis(axis);
            if m != 0 {
                self.ptr = self.ptr.offset(stride_offset(m - 1, s as Ix));
            }
            self.strides.set_axis(axis, (-s) as Ix);
        }
    }

    /// If possible, merge in the axis `take` to `into`.
    ///
    /// Returns `true` iff the axes are now merged.
    ///
    /// This method merges the axes if movement along the two original axes
    /// (moving fastest along the `into` axis) can be equivalently represented
    /// as movement along one (merged) axis. Merging the axes preserves this
    /// order in the merged axis. If `take` and `into` are the same axis, then
    /// the axis is "merged" if its length is ≤ 1.
    ///
    /// If the return value is `true`, then the following hold:
    ///
    /// * The new length of the `into` axis is the product of the original
    ///   lengths of the two axes.
    ///
    /// * The new length of the `take` axis is 0 if the product of the original
    ///   lengths of the two axes is 0, and 1 otherwise.
    ///
    /// If the return value is `false`, then merging is not possible, and the
    /// original shape and strides have been preserved.
    ///
    /// Note that the ordering constraint means that if it's possible to merge
    /// `take` into `into`, it's usually not possible to merge `into` into
    /// `take`, and vice versa.
    ///
    /// ```
    /// use ndarray::Array3;
    /// use ndarray::Axis;
    ///
    /// let mut a = Array3::<f64>::zeros((2, 3, 4));
    /// assert!(a.merge_axes(Axis(1), Axis(2)));
    /// assert_eq!(a.shape(), &[2, 1, 12]);
    /// ```
    ///
    /// ***Panics*** if an axis is out of bounds.
    pub fn merge_axes(&mut self, take: Axis, into: Axis) -> bool {
        merge_axes(&mut self.dim, &mut self.strides, take, into)
    }

    /// Insert new array axis at `axis` and return the result.
    ///
    /// ```
    /// use ndarray::{Array3, Axis, arr1, arr2};
    ///
    /// // Convert a 1-D array into a row vector (2-D).
    /// let a = arr1(&[1, 2, 3]);
    /// let row = a.insert_axis(Axis(0));
    /// assert_eq!(row, arr2(&[[1, 2, 3]]));
    ///
    /// // Convert a 1-D array into a column vector (2-D).
    /// let b = arr1(&[1, 2, 3]);
    /// let col = b.insert_axis(Axis(1));
    /// assert_eq!(col, arr2(&[[1], [2], [3]]));
    ///
    /// // The new axis always has length 1.
    /// let b = Array3::<f64>::zeros((3, 4, 5));
    /// assert_eq!(b.insert_axis(Axis(2)).shape(), &[3, 4, 1, 5]);
    /// ```
    ///
    /// ***Panics*** if the axis is out of bounds.
    pub fn insert_axis(self, axis: Axis) -> ArrayBase<S, D::Larger> {
        assert!(axis.index() <= self.ndim());
        // safe because a new axis of length one does not affect memory layout
        unsafe {
            let strides = self.strides.insert_axis(axis);
            let dim = self.dim.insert_axis(axis);
            self.with_strides_dim(strides, dim)
        }
    }

    /// Remove array axis `axis` and return the result.
    ///
    /// This is equivalent to `.index_axis_move(axis, 0)` and makes most sense to use if the
    /// axis to remove is of length 1.
    ///
    /// **Panics** if the axis is out of bounds or its length is zero.
    pub fn remove_axis(self, axis: Axis) -> ArrayBase<S, D::Smaller>
    where
        D: RemoveAxis,
    {
        self.index_axis_move(axis, 0)
    }

    pub(crate) fn pointer_is_inbounds(&self) -> bool {
        self.data._is_pointer_inbounds(self.as_ptr())
    }

    /// Perform an elementwise assigment to `self` from `rhs`.
    ///
    /// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
    ///
    /// **Panics** if broadcasting isn’t possible.
    pub fn assign<E: Dimension, S2>(&mut self, rhs: &ArrayBase<S2, E>)
    where
        S: DataMut,
        A: Clone,
        S2: Data<Elem = A>,
    {
        self.zip_mut_with(rhs, |x, y| *x = y.clone());
    }

    /// Perform an elementwise assigment of values cloned from `self` into array or producer `to`.
    ///
    /// The destination `to` can be another array or a producer of assignable elements.
    /// [`AssignElem`] determines how elements are assigned.
    ///
    /// **Panics** if shapes disagree.
    pub fn assign_to<P>(&self, to: P)
    where
        S: Data,
        P: IntoNdProducer<Dim = D>,
        P::Item: AssignElem<A>,
        A: Clone,
    {
        Zip::from(self)
            .map_assign_into(to, A::clone);
    }

    /// Perform an elementwise assigment to `self` from element `x`.
    pub fn fill(&mut self, x: A)
    where
        S: DataMut,
        A: Clone,
    {
        self.map_inplace(move |elt| *elt = x.clone());
    }

    pub(crate) fn zip_mut_with_same_shape<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, mut f: F)
    where
        S: DataMut,
        S2: Data<Elem = B>,
        E: Dimension,
        F: FnMut(&mut A, &B),
    {
        debug_assert_eq!(self.shape(), rhs.shape());

        if self.dim.strides_equivalent(&self.strides, &rhs.strides) {
            if let Some(self_s) = self.as_slice_memory_order_mut() {
                if let Some(rhs_s) = rhs.as_slice_memory_order() {
                    for (s, r) in self_s.iter_mut().zip(rhs_s) {
                        f(s, r);
                    }
                    return;
                }
            }
        }

        // Otherwise, fall back to the outer iter
        self.zip_mut_with_by_rows(rhs, f);
    }

    // zip two arrays where they have different layout or strides
    #[inline(always)]
    fn zip_mut_with_by_rows<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, mut f: F)
    where
        S: DataMut,
        S2: Data<Elem = B>,
        E: Dimension,
        F: FnMut(&mut A, &B),
    {
        debug_assert_eq!(self.shape(), rhs.shape());
        debug_assert_ne!(self.ndim(), 0);

        // break the arrays up into their inner rows
        let n = self.ndim();
        let dim = self.raw_dim();
        Zip::from(LanesMut::new(self.view_mut(), Axis(n - 1)))
            .and(Lanes::new(rhs.broadcast_assume(dim), Axis(n - 1)))
            .for_each(move |s_row, r_row| Zip::from(s_row).and(r_row).for_each(|a, b| f(a, b)));
    }

    fn zip_mut_with_elem<B, F>(&mut self, rhs_elem: &B, mut f: F)
    where
        S: DataMut,
        F: FnMut(&mut A, &B),
    {
        self.map_inplace(move |elt| f(elt, rhs_elem));
    }

    /// Traverse two arrays in unspecified order, in lock step,
    /// calling the closure `f` on each element pair.
    ///
    /// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
    ///
    /// **Panics** if broadcasting isn’t possible.
    #[inline]
    pub fn zip_mut_with<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, f: F)
    where
        S: DataMut,
        S2: Data<Elem = B>,
        E: Dimension,
        F: FnMut(&mut A, &B),
    {
        if rhs.dim.ndim() == 0 {
            // Skip broadcast from 0-dim array
            self.zip_mut_with_elem(rhs.get_0d(), f);
        } else if self.dim.ndim() == rhs.dim.ndim() && self.shape() == rhs.shape() {
            self.zip_mut_with_same_shape(rhs, f);
        } else {
            let rhs_broadcast = rhs.broadcast_unwrap(self.raw_dim());
            self.zip_mut_with_by_rows(&rhs_broadcast, f);
        }
    }

    /// Traverse the array elements and apply a fold,
    /// returning the resulting value.
    ///
    /// Elements are visited in arbitrary order.
    pub fn fold<'a, F, B>(&'a self, init: B, f: F) -> B
    where
        F: FnMut(B, &'a A) -> B,
        A: 'a,
        S: Data,
    {
        if let Some(slc) = self.as_slice_memory_order() {
            slc.iter().fold(init, f)
        } else {
            let mut v = self.view();
            move_min_stride_axis_to_last(&mut v.dim, &mut v.strides);
            v.into_elements_base().fold(init, f)
        }
    }

    /// Call `f` by reference on each element and create a new array
    /// with the new values.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// Return an array with the same shape as `self`.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[ 0., 1.],
    ///                [-1., 2.]]);
    /// assert!(
    ///     a.map(|x| *x >= 1.0)
    ///     == arr2(&[[false, true],
    ///               [false, true]])
    /// );
    /// ```
    pub fn map<'a, B, F>(&'a self, f: F) -> Array<B, D>
    where
        F: FnMut(&'a A) -> B,
        A: 'a,
        S: Data,
    {
        unsafe {
            if let Some(slc) = self.as_slice_memory_order() {
                ArrayBase::from_shape_trusted_iter_unchecked(
                    self.dim.clone().strides(self.strides.clone()),
                    slc.iter(), f)
            } else {
                ArrayBase::from_shape_trusted_iter_unchecked(self.dim.clone(), self.iter(), f)
            }
        }
    }

    /// Call `f` on a mutable reference of each element and create a new array
    /// with the new values.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// Return an array with the same shape as `self`.
    pub fn map_mut<'a, B, F>(&'a mut self, f: F) -> Array<B, D>
    where
        F: FnMut(&'a mut A) -> B,
        A: 'a,
        S: DataMut,
    {
        let dim = self.dim.clone();
        if self.is_contiguous() {
            let strides = self.strides.clone();
            let slc = self.as_slice_memory_order_mut().unwrap();
            unsafe { ArrayBase::from_shape_trusted_iter_unchecked(dim.strides(strides),
                        slc.iter_mut(), f) }
        } else {
            unsafe { ArrayBase::from_shape_trusted_iter_unchecked(dim, self.iter_mut(), f) }
        }
    }

    /// Call `f` by **v**alue on each element and create a new array
    /// with the new values.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// Return an array with the same shape as `self`.
    ///
    /// ```
    /// use ndarray::arr2;
    ///
    /// let a = arr2(&[[ 0., 1.],
    ///                [-1., 2.]]);
    /// assert!(
    ///     a.mapv(f32::abs) == arr2(&[[0., 1.],
    ///                                [1., 2.]])
    /// );
    /// ```
    pub fn mapv<B, F>(&self, mut f: F) -> Array<B, D>
    where
        F: FnMut(A) -> B,
        A: Clone,
        S: Data,
    {
        self.map(move |x| f(x.clone()))
    }

    /// Call `f` by **v**alue on each element, update the array with the new values
    /// and return it.
    ///
    /// Elements are visited in arbitrary order.
    pub fn mapv_into<F>(mut self, f: F) -> Self
    where
        S: DataMut,
        F: FnMut(A) -> A,
        A: Clone,
    {
        self.mapv_inplace(f);
        self
    }

    /// Consume the array, call `f` by **v**alue on each element, and return an
    /// owned array with the new values. Works for **any** `F: FnMut(A)->B`.
    ///
    /// If `A` and `B` are the same type then the map is performed by delegating
    /// to [`mapv_into`] and then converting into an owned array. This avoids
    /// unnecessary memory allocations in [`mapv`].
    ///
    /// If `A` and `B` are different types then a new array is allocated and the
    /// map is performed as in [`mapv`].
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// [`mapv_into`]: ArrayBase::mapv_into
    /// [`mapv`]: ArrayBase::mapv
    pub fn mapv_into_any<B, F>(self, mut f: F) -> Array<B, D>
    where
        S: DataMut,
        F: FnMut(A) -> B,
        A: Clone + 'static,
        B: 'static,
    {
        if core::any::TypeId::of::<A>() == core::any::TypeId::of::<B>() {
            // A and B are the same type.
            // Wrap f in a closure of type FnMut(A) -> A .
            let f = |a| {
                let b = f(a);
                // Safe because A and B are the same type.
                unsafe { unlimited_transmute::<B, A>(b) }
            };
            // Delegate to mapv_into() using the wrapped closure.
            // Convert output to a uniquely owned array of type Array<A, D>.
            let output = self.mapv_into(f).into_owned();
            // Change the return type from Array<A, D> to Array<B, D>.
            // Again, safe because A and B are the same type.
            unsafe { unlimited_transmute::<Array<A, D>, Array<B, D>>(output) }
        } else {
            // A and B are not the same type.
            // Fallback to mapv().
            self.mapv(f)
        }
    }

    /// Modify the array in place by calling `f` by mutable reference on each element.
    ///
    /// Elements are visited in arbitrary order.
    pub fn map_inplace<'a, F>(&'a mut self, f: F)
    where
        S: DataMut,
        A: 'a,
        F: FnMut(&'a mut A),
    {
        match self.try_as_slice_memory_order_mut() {
            Ok(slc) => slc.iter_mut().for_each(f),
            Err(arr) => {
                let mut v = arr.view_mut();
                move_min_stride_axis_to_last(&mut v.dim, &mut v.strides);
                v.into_elements_base().for_each(f);
            }
        }
    }

    /// Modify the array in place by calling `f` by **v**alue on each element.
    /// The array is updated with the new values.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// ```
    /// # #[cfg(feature = "approx")] {
    /// use approx::assert_abs_diff_eq;
    /// use ndarray::arr2;
    ///
    /// let mut a = arr2(&[[ 0., 1.],
    ///                    [-1., 2.]]);
    /// a.mapv_inplace(f32::exp);
    /// assert_abs_diff_eq!(
    ///     a,
    ///     arr2(&[[1.00000, 2.71828],
    ///            [0.36788, 7.38906]]),
    ///     epsilon = 1e-5,
    /// );
    /// # }
    /// ```
    pub fn mapv_inplace<F>(&mut self, mut f: F)
    where
        S: DataMut,
        F: FnMut(A) -> A,
        A: Clone,
    {
        self.map_inplace(move |x| *x = f(x.clone()));
    }

    /// Call `f` for each element in the array.
    ///
    /// Elements are visited in arbitrary order.
    pub fn for_each<'a, F>(&'a self, mut f: F)
    where
        F: FnMut(&'a A),
        A: 'a,
        S: Data,
    {
        self.fold((), move |(), elt| f(elt))
    }

    /// Visit each element in the array by calling `f` by reference
    /// on each element.
    ///
    /// Elements are visited in arbitrary order.
    #[deprecated(note="Renamed to .for_each()", since="0.15.0")]
    pub fn visit<'a, F>(&'a self, f: F)
    where
        F: FnMut(&'a A),
        A: 'a,
        S: Data,
    {
        self.for_each(f)
    }

    /// Fold along an axis.
    ///
    /// Combine the elements of each subview with the previous using the `fold`
    /// function and initial value `init`.
    ///
    /// Return the result as an `Array`.
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn fold_axis<B, F>(&self, axis: Axis, init: B, mut fold: F) -> Array<B, D::Smaller>
    where
        D: RemoveAxis,
        F: FnMut(&B, &A) -> B,
        B: Clone,
        S: Data,
    {
        let mut res = Array::from_elem(self.raw_dim().remove_axis(axis), init);
        for subview in self.axis_iter(axis) {
            res.zip_mut_with(&subview, |x, y| *x = fold(x, y));
        }
        res
    }

    /// Reduce the values along an axis into just one value, producing a new
    /// array with one less dimension.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// Return the result as an `Array`.
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn map_axis<'a, B, F>(&'a self, axis: Axis, mut mapping: F) -> Array<B, D::Smaller>
    where
        D: RemoveAxis,
        F: FnMut(ArrayView1<'a, A>) -> B,
        A: 'a,
        S: Data,
    {
        let view_len = self.len_of(axis);
        let view_stride = self.strides.axis(axis);
        if view_len == 0 {
            let new_dim = self.dim.remove_axis(axis);
            Array::from_shape_simple_fn(new_dim, move || mapping(ArrayView::from(&[])))
        } else {
            // use the 0th subview as a map to each 1d array view extended from
            // the 0th element.
            self.index_axis(axis, 0).map(|first_elt| unsafe {
                mapping(ArrayView::new_(first_elt, Ix1(view_len), Ix1(view_stride)))
            })
        }
    }

    /// Reduce the values along an axis into just one value, producing a new
    /// array with one less dimension.
    /// 1-dimensional lanes are passed as mutable references to the reducer,
    /// allowing for side-effects.
    ///
    /// Elements are visited in arbitrary order.
    ///
    /// Return the result as an `Array`.
    ///
    /// **Panics** if `axis` is out of bounds.
    pub fn map_axis_mut<'a, B, F>(&'a mut self, axis: Axis, mut mapping: F) -> Array<B, D::Smaller>
    where
        D: RemoveAxis,
        F: FnMut(ArrayViewMut1<'a, A>) -> B,
        A: 'a,
        S: DataMut,
    {
        let view_len = self.len_of(axis);
        let view_stride = self.strides.axis(axis);
        if view_len == 0 {
            let new_dim = self.dim.remove_axis(axis);
            Array::from_shape_simple_fn(new_dim, move || mapping(ArrayViewMut::from(&mut [])))
        } else {
            // use the 0th subview as a map to each 1d array view extended from
            // the 0th element.
            self.index_axis_mut(axis, 0).map_mut(|first_elt| unsafe {
                mapping(ArrayViewMut::new_(
                    first_elt,
                    Ix1(view_len),
                    Ix1(view_stride),
                ))
            })
        }
    }

    /// Remove the `index`th elements along `axis` and shift down elements from higher indexes.
    ///
    /// Note that this "removes" the elements by swapping them around to the end of the axis and
    /// shortening the length of the axis; the elements are not deinitialized or dropped by this,
    /// just moved out of view (this only matters for elements with ownership semantics). It's
    /// similar to slicing an owned array in place.
    ///
    /// Decreases the length of `axis` by one.
    ///
    /// ***Panics*** if `axis` is out of bounds<br>
    /// ***Panics*** if not `index < self.len_of(axis)`.
    pub fn remove_index(&mut self, axis: Axis, index: usize)
    where
        S: DataOwned + DataMut,
    {
        assert!(index < self.len_of(axis), "index {} must be less than length of Axis({})",
                index, axis.index());
        let (_, mut tail) = self.view_mut().split_at(axis, index);
        // shift elements to the front
        Zip::from(tail.lanes_mut(axis)).for_each(|mut lane| lane.rotate1_front());
        // then slice the axis in place to cut out the removed final element
        self.slice_axis_inplace(axis, Slice::new(0, Some(-1), 1));
    }

    /// Iterates over pairs of consecutive elements along the axis.
    ///
    /// The first argument to the closure is an element, and the second
    /// argument is the next element along the axis. Iteration is guaranteed to
    /// proceed in order along the specified axis, but in all other respects
    /// the iteration order is unspecified.
    ///
    /// # Example
    ///
    /// For example, this can be used to compute the cumulative sum along an
    /// axis:
    ///
    /// ```
    /// use ndarray::{array, Axis};
    ///
    /// let mut arr = array![
    ///     [[1, 2], [3, 4], [5, 6]],
    ///     [[7, 8], [9, 10], [11, 12]],
    /// ];
    /// arr.accumulate_axis_inplace(Axis(1), |&prev, curr| *curr += prev);
    /// assert_eq!(
    ///     arr,
    ///     array![
    ///         [[1, 2], [4, 6], [9, 12]],
    ///         [[7, 8], [16, 18], [27, 30]],
    ///     ],
    /// );
    /// ```
    pub fn accumulate_axis_inplace<F>(&mut self, axis: Axis, mut f: F)
    where
        F: FnMut(&A, &mut A),
        S: DataMut,
    {
        if self.len_of(axis) <= 1 {
            return;
        }
        let mut curr = self.raw_view_mut(); // mut borrow of the array here
        let mut prev = curr.raw_view(); // derive further raw views from the same borrow
        prev.slice_axis_inplace(axis, Slice::from(..-1));
        curr.slice_axis_inplace(axis, Slice::from(1..));
        // This implementation relies on `Zip` iterating along `axis` in order.
        Zip::from(prev).and(curr).for_each(|prev, curr| unsafe {
            // These pointer dereferences and borrows are safe because:
            //
            // 1. They're pointers to elements in the array.
            //
            // 2. `S: DataMut` guarantees that elements are safe to borrow
            //    mutably and that they don't alias.
            //
            // 3. The lifetimes of the borrows last only for the duration
            //    of the call to `f`, so aliasing across calls to `f`
            //    cannot occur.
            f(&*prev, &mut *curr)
        });
    }
}


/// Transmute from A to B.
///
/// Like transmute, but does not have the compile-time size check which blocks
/// using regular transmute in some cases.
///
/// **Panics** if the size of A and B are different.
#[inline]
unsafe fn unlimited_transmute<A, B>(data: A) -> B {
    // safe when sizes are equal and caller guarantees that representations are equal
    assert_eq!(size_of::<A>(), size_of::<B>());
    let old_data = ManuallyDrop::new(data);
    (&*old_data as *const A as *const B).read()
}

type DimMaxOf<A, B> = <A as DimMax<B>>::Output;