1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
// Copyright 2014-2020 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![crate_name = "ndarray"]
#![doc(html_root_url = "https://docs.rs/ndarray/0.15/")]
#![doc(html_logo_url = "https://rust-ndarray.github.io/images/rust-ndarray_logo.svg")]
#![allow(
clippy::many_single_char_names,
clippy::deref_addrof,
clippy::unreadable_literal,
clippy::manual_map, // is not an error
clippy::while_let_on_iterator, // is not an error
clippy::from_iter_instead_of_collect, // using from_iter is good style
clippy::redundant_closure, // false positives clippy #7812
)]
#![doc(test(attr(deny(warnings))))]
#![doc(test(attr(allow(unused_variables))))]
#![doc(test(attr(allow(deprecated))))]
#![cfg_attr(not(feature = "std"), no_std)]
//! The `ndarray` crate provides an *n*-dimensional container for general elements
//! and for numerics.
//!
//! In *n*-dimensional we include, for example, 1-dimensional rows or columns,
//! 2-dimensional matrices, and higher dimensional arrays. If the array has *n*
//! dimensions, then an element in the array is accessed by using that many indices.
//! Each dimension is also called an *axis*.
//!
//! - **[`ArrayBase`]**:
//! The *n*-dimensional array type itself.<br>
//! It is used to implement both the owned arrays and the views; see its docs
//! for an overview of all array features.<br>
//! - The main specific array type is **[`Array`]**, which owns
//! its elements.
//!
//! ## Highlights
//!
//! - Generic *n*-dimensional array
//! - [Slicing](ArrayBase#slicing), also with arbitrary step size, and negative
//! indices to mean elements from the end of the axis.
//! - Views and subviews of arrays; iterators that yield subviews.
//! - Higher order operations and arithmetic are performant
//! - Array views can be used to slice and mutate any `[T]` data using
//! `ArrayView::from` and `ArrayViewMut::from`.
//! - [`Zip`] for lock step function application across two or more arrays or other
//! item producers ([`NdProducer`] trait).
//!
//! ## Crate Status
//!
//! - Still iterating on and evolving the crate
//! + The crate is continuously developing, and breaking changes are expected
//! during evolution from version to version. We adopt the newest stable
//! rust features if we need them.
//! + Note that functions/methods/traits/etc. hidden from the docs are not
//! considered part of the public API, so changes to them are not
//! considered breaking changes.
//! - Performance:
//! + Prefer higher order methods and arithmetic operations on arrays first,
//! then iteration, and as a last priority using indexed algorithms.
//! + The higher order functions like [`.map()`](ArrayBase::map),
//! [`.map_inplace()`](ArrayBase::map_inplace), [`.zip_mut_with()`](ArrayBase::zip_mut_with),
//! [`Zip`] and [`azip!()`](azip) are the most efficient ways
//! to perform single traversal and lock step traversal respectively.
//! + Performance of an operation depends on the memory layout of the array
//! or array view. Especially if it's a binary operation, which
//! needs matching memory layout to be efficient (with some exceptions).
//! + Efficient floating point matrix multiplication even for very large
//! matrices; can optionally use BLAS to improve it further.
//! - **Requires Rust 1.49 or later**
//!
//! ## Crate Feature Flags
//!
//! The following crate feature flags are available. They are configured in your
//! `Cargo.toml`. See [`doc::crate_feature_flags`] for more information.
//!
//! - `std`: Rust standard library-using functionality (enabled by default)
//! - `serde`: serialization support for serde 1.x
//! - `rayon`: Parallel iterators, parallelized methods, the [`parallel`] module and [`par_azip!`].
//! - `approx` Implementations of traits from version 0.4 of the [`approx`] crate.
//! - `approx-0_5`: Implementations of traits from version 0.5 of the [`approx`] crate.
//! - `blas`: transparent BLAS support for matrix multiplication, needs configuration.
//! - `matrixmultiply-threading`: Use threading from `matrixmultiply`.
//!
//! ## Documentation
//!
//! * The docs for [`ArrayBase`] provide an overview of
//! the *n*-dimensional array type. Other good pages to look at are the
//! documentation for the [`s![]`](s!) and
//! [`azip!()`](azip!) macros.
//!
//! * If you have experience with NumPy, you may also be interested in
//! [`ndarray_for_numpy_users`](doc::ndarray_for_numpy_users).
//!
//! ## The ndarray ecosystem
//!
//! `ndarray` provides a lot of functionality, but it's not a one-stop solution.
//!
//! `ndarray` includes matrix multiplication and other binary/unary operations out of the box.
//! More advanced linear algebra routines (e.g. SVD decomposition or eigenvalue computation)
//! can be found in [`ndarray-linalg`](https://crates.io/crates/ndarray-linalg).
//!
//! The same holds for statistics: `ndarray` provides some basic functionalities (e.g. `mean`)
//! but more advanced routines can be found in [`ndarray-stats`](https://crates.io/crates/ndarray-stats).
//!
//! If you are looking to generate random arrays instead, check out [`ndarray-rand`](https://crates.io/crates/ndarray-rand).
//!
//! For conversion between `ndarray`, [`nalgebra`](https://crates.io/crates/nalgebra) and
//! [`image`](https://crates.io/crates/image) check out [`nshare`](https://crates.io/crates/nshare).
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
#[cfg(not(feature = "std"))]
extern crate core as std;
#[cfg(feature = "blas")]
extern crate cblas_sys;
#[cfg(feature = "docs")]
pub mod doc;
use std::marker::PhantomData;
use alloc::sync::Arc;
pub use crate::dimension::dim::*;
pub use crate::dimension::{Axis, AxisDescription, Dimension, IntoDimension, RemoveAxis};
pub use crate::dimension::{DimAdd, DimMax};
pub use crate::dimension::IxDynImpl;
pub use crate::dimension::NdIndex;
pub use crate::error::{ErrorKind, ShapeError};
pub use crate::indexes::{indices, indices_of};
pub use crate::order::Order;
pub use crate::slice::{
MultiSliceArg, NewAxis, Slice, SliceArg, SliceInfo, SliceInfoElem, SliceNextDim,
};
use crate::iterators::Baseiter;
use crate::iterators::{ElementsBase, ElementsBaseMut, Iter, IterMut};
pub use crate::arraytraits::AsArray;
#[cfg(feature = "std")]
pub use crate::linalg_traits::NdFloat;
pub use crate::linalg_traits::LinalgScalar;
#[allow(deprecated)] // stack_new_axis
pub use crate::stacking::{concatenate, stack, stack_new_axis};
pub use crate::math_cell::MathCell;
pub use crate::impl_views::IndexLonger;
pub use crate::shape_builder::{Shape, ShapeBuilder, ShapeArg, StrideShape};
#[macro_use]
mod macro_utils;
#[macro_use]
mod private;
mod aliases;
#[macro_use]
mod itertools;
mod argument_traits;
#[cfg(feature = "serde")]
mod array_serde;
mod arrayformat;
mod arraytraits;
pub use crate::argument_traits::AssignElem;
mod data_repr;
mod data_traits;
pub use crate::aliases::*;
pub use crate::data_traits::{
Data, DataMut, DataOwned, DataShared, RawData, RawDataClone, RawDataMut,
RawDataSubst,
};
mod free_functions;
pub use crate::free_functions::*;
pub use crate::iterators::iter;
mod error;
mod extension;
mod geomspace;
mod indexes;
mod iterators;
mod layout;
mod linalg_traits;
mod linspace;
mod logspace;
mod math_cell;
mod numeric_util;
mod order;
mod partial;
mod shape_builder;
#[macro_use]
mod slice;
mod split_at;
mod stacking;
mod low_level_util;
#[macro_use]
mod zip;
mod dimension;
pub use crate::zip::{FoldWhile, IntoNdProducer, NdProducer, Zip};
pub use crate::layout::Layout;
/// Implementation's prelude. Common types used everywhere.
mod imp_prelude {
pub use crate::dimension::DimensionExt;
pub use crate::prelude::*;
pub use crate::ArcArray;
pub use crate::{
CowRepr, Data, DataMut, DataOwned, DataShared, Ix, Ixs, RawData, RawDataMut, RawViewRepr,
RemoveAxis, ViewRepr,
};
}
pub mod prelude;
/// Array index type
pub type Ix = usize;
/// Array index type (signed)
pub type Ixs = isize;
/// An *n*-dimensional array.
///
/// The array is a general container of elements.
/// The array supports arithmetic operations by applying them elementwise, if the
/// elements are numeric, but it supports non-numeric elements too.
///
/// The arrays rarely grow or shrink, since those operations can be costly. On
/// the other hand there is a rich set of methods and operations for taking views,
/// slices, and making traversals over one or more arrays.
///
/// In *n*-dimensional we include for example 1-dimensional rows or columns,
/// 2-dimensional matrices, and higher dimensional arrays. If the array has *n*
/// dimensions, then an element is accessed by using that many indices.
///
/// The `ArrayBase<S, D>` is parameterized by `S` for the data container and
/// `D` for the dimensionality.
///
/// Type aliases [`Array`], [`ArcArray`], [`CowArray`], [`ArrayView`], and
/// [`ArrayViewMut`] refer to `ArrayBase` with different types for the data
/// container: arrays with different kinds of ownership or different kinds of array views.
///
/// ## Contents
///
/// + [Array](#array)
/// + [ArcArray](#arcarray)
/// + [CowArray](#cowarray)
/// + [Array Views](#array-views)
/// + [Indexing and Dimension](#indexing-and-dimension)
/// + [Loops, Producers and Iterators](#loops-producers-and-iterators)
/// + [Slicing](#slicing)
/// + [Subviews](#subviews)
/// + [Arithmetic Operations](#arithmetic-operations)
/// + [Broadcasting](#broadcasting)
/// + [Conversions](#conversions)
/// + [Constructor Methods for Owned Arrays](#constructor-methods-for-owned-arrays)
/// + [Methods For All Array Types](#methods-for-all-array-types)
/// + [Methods For 1-D Arrays](#methods-for-1-d-arrays)
/// + [Methods For 2-D Arrays](#methods-for-2-d-arrays)
/// + [Methods for Dynamic-Dimensional Arrays](#methods-for-dynamic-dimensional-arrays)
/// + [Numerical Methods for Arrays](#numerical-methods-for-arrays)
///
/// ## `Array`
///
/// [`Array`] is an owned array that owns the underlying array
/// elements directly (just like a `Vec`) and it is the default way to create and
/// store n-dimensional data. `Array<A, D>` has two type parameters: `A` for
/// the element type, and `D` for the dimensionality. A particular
/// dimensionality's type alias like `Array3<A>` just has the type parameter
/// `A` for element type.
///
/// An example:
///
/// ```
/// // Create a three-dimensional f64 array, initialized with zeros
/// use ndarray::Array3;
/// let mut temperature = Array3::<f64>::zeros((3, 4, 5));
/// // Increase the temperature in this location
/// temperature[[2, 2, 2]] += 0.5;
/// ```
///
/// ## `ArcArray`
///
/// [`ArcArray`] is an owned array with reference counted
/// data (shared ownership).
/// Sharing requires that it uses copy-on-write for mutable operations.
/// Calling a method for mutating elements on `ArcArray`, for example
/// [`view_mut()`](Self::view_mut) or [`get_mut()`](Self::get_mut),
/// will break sharing and require a clone of the data (if it is not uniquely held).
///
/// ## `CowArray`
///
/// [`CowArray`] is analogous to [`std::borrow::Cow`].
/// It can represent either an immutable view or a uniquely owned array. If a
/// `CowArray` instance is the immutable view variant, then calling a method
/// for mutating elements in the array will cause it to be converted into the
/// owned variant (by cloning all the elements) before the modification is
/// performed.
///
/// ## Array Views
///
/// [`ArrayView`] and [`ArrayViewMut`] are read-only and read-write array views
/// respectively. They use dimensionality, indexing, and almost all other
/// methods the same way as the other array types.
///
/// Methods for `ArrayBase` apply to array views too, when the trait bounds
/// allow.
///
/// Please see the documentation for the respective array view for an overview
/// of methods specific to array views: [`ArrayView`], [`ArrayViewMut`].
///
/// A view is created from an array using [`.view()`](ArrayBase::view),
/// [`.view_mut()`](ArrayBase::view_mut), using
/// slicing ([`.slice()`](ArrayBase::slice), [`.slice_mut()`](ArrayBase::slice_mut)) or from one of
/// the many iterators that yield array views.
///
/// You can also create an array view from a regular slice of data not
/// allocated with `Array` — see array view methods or their `From` impls.
///
/// Note that all `ArrayBase` variants can change their view (slicing) of the
/// data freely, even when their data can’t be mutated.
///
/// ## Indexing and Dimension
///
/// The dimensionality of the array determines the number of *axes*, for example
/// a 2D array has two axes. These are listed in “big endian” order, so that
/// the greatest dimension is listed first, the lowest dimension with the most
/// rapidly varying index is the last.
///
/// In a 2D array the index of each element is `[row, column]` as seen in this
/// 4 × 3 example:
///
/// ```ignore
/// [[ [0, 0], [0, 1], [0, 2] ], // row 0
/// [ [1, 0], [1, 1], [1, 2] ], // row 1
/// [ [2, 0], [2, 1], [2, 2] ], // row 2
/// [ [3, 0], [3, 1], [3, 2] ]] // row 3
/// // \ \ \
/// // column 0 \ column 2
/// // column 1
/// ```
///
/// The number of axes for an array is fixed by its `D` type parameter: `Ix1`
/// for a 1D array, `Ix2` for a 2D array etc. The dimension type `IxDyn` allows
/// a dynamic number of axes.
///
/// A fixed size array (`[usize; N]`) of the corresponding dimensionality is
/// used to index the `Array`, making the syntax `array[[` i, j, ...`]]`
///
/// ```
/// use ndarray::Array2;
/// let mut array = Array2::zeros((4, 3));
/// array[[1, 1]] = 7;
/// ```
///
/// Important traits and types for dimension and indexing:
///
/// - A [`struct@Dim`] value represents a dimensionality or index.
/// - Trait [`Dimension`] is implemented by all
/// dimensionalities. It defines many operations for dimensions and indices.
/// - Trait [`IntoDimension`] is used to convert into a
/// `Dim` value.
/// - Trait [`ShapeBuilder`] is an extension of
/// `IntoDimension` and is used when constructing an array. A shape describes
/// not just the extent of each axis but also their strides.
/// - Trait [`NdIndex`] is an extension of `Dimension` and is
/// for values that can be used with indexing syntax.
///
///
/// The default memory order of an array is *row major* order (a.k.a “c” order),
/// where each row is contiguous in memory.
/// A *column major* (a.k.a. “f” or fortran) memory order array has
/// columns (or, in general, the outermost axis) with contiguous elements.
///
/// The logical order of any array’s elements is the row major order
/// (the rightmost index is varying the fastest).
/// The iterators `.iter(), .iter_mut()` always adhere to this order, for example.
///
/// ## Loops, Producers and Iterators
///
/// Using [`Zip`] is the most general way to apply a procedure
/// across one or several arrays or *producers*.
///
/// [`NdProducer`] is like an iterable but for
/// multidimensional data. All producers have dimensions and axes, like an
/// array view, and they can be split and used with parallelization using `Zip`.
///
/// For example, `ArrayView<A, D>` is a producer, it has the same dimensions
/// as the array view and for each iteration it produces a reference to
/// the array element (`&A` in this case).
///
/// Another example, if we have a 10 × 10 array and use `.exact_chunks((2, 2))`
/// we get a producer of chunks which has the dimensions 5 × 5 (because
/// there are *10 / 2 = 5* chunks in either direction). The 5 × 5 chunks producer
/// can be paired with any other producers of the same dimension with `Zip`, for
/// example 5 × 5 arrays.
///
/// ### `.iter()` and `.iter_mut()`
///
/// These are the element iterators of arrays and they produce an element
/// sequence in the logical order of the array, that means that the elements
/// will be visited in the sequence that corresponds to increasing the
/// last index first: *0, ..., 0, 0*; *0, ..., 0, 1*; *0, ...0, 2* and so on.
///
/// ### `.outer_iter()` and `.axis_iter()`
///
/// These iterators produce array views of one smaller dimension.
///
/// For example, for a 2D array, `.outer_iter()` will produce the 1D rows.
/// For a 3D array, `.outer_iter()` produces 2D subviews.
///
/// `.axis_iter()` is like `outer_iter()` but allows you to pick which
/// axis to traverse.
///
/// The `outer_iter` and `axis_iter` are one dimensional producers.
///
/// ## `.rows()`, `.columns()` and `.lanes()`
///
/// [`.rows()`][gr] is a producer (and iterable) of all rows in an array.
///
/// ```
/// use ndarray::Array;
///
/// // 1. Loop over the rows of a 2D array
/// let mut a = Array::zeros((10, 10));
/// for mut row in a.rows_mut() {
/// row.fill(1.);
/// }
///
/// // 2. Use Zip to pair each row in 2D `a` with elements in 1D `b`
/// use ndarray::Zip;
/// let mut b = Array::zeros(a.nrows());
///
/// Zip::from(a.rows())
/// .and(&mut b)
/// .for_each(|a_row, b_elt| {
/// *b_elt = a_row[a.ncols() - 1] - a_row[0];
/// });
/// ```
///
/// The *lanes* of an array are 1D segments along an axis and when pointed
/// along the last axis they are *rows*, when pointed along the first axis
/// they are *columns*.
///
/// A *m* × *n* array has *m* rows each of length *n* and conversely
/// *n* columns each of length *m*.
///
/// To generalize this, we say that an array of dimension *a* × *m* × *n*
/// has *a m* rows. It's composed of *a* times the previous array, so it
/// has *a* times as many rows.
///
/// All methods: [`.rows()`][gr], [`.rows_mut()`][grm],
/// [`.columns()`][gc], [`.columns_mut()`][gcm],
/// [`.lanes(axis)`][l], [`.lanes_mut(axis)`][lm].
///
/// [gr]: Self::rows
/// [grm]: Self::rows_mut
/// [gc]: Self::columns
/// [gcm]: Self::columns_mut
/// [l]: Self::lanes
/// [lm]: Self::lanes_mut
///
/// Yes, for 2D arrays `.rows()` and `.outer_iter()` have about the same
/// effect:
///
/// + `rows()` is a producer with *n* - 1 dimensions of 1 dimensional items
/// + `outer_iter()` is a producer with 1 dimension of *n* - 1 dimensional items
///
/// ## Slicing
///
/// You can use slicing to create a view of a subset of the data in
/// the array. Slicing methods include [`.slice()`], [`.slice_mut()`],
/// [`.slice_move()`], and [`.slice_collapse()`].
///
/// The slicing argument can be passed using the macro [`s![]`](s!),
/// which will be used in all examples. (The explicit form is an instance of
/// [`SliceInfo`] or another type which implements [`SliceArg`]; see their docs
/// for more information.)
///
/// If a range is used, the axis is preserved. If an index is used, that index
/// is selected and the axis is removed; this selects a subview. See
/// [*Subviews*](#subviews) for more information about subviews. If a
/// [`NewAxis`] instance is used, a new axis is inserted. Note that
/// [`.slice_collapse()`] panics on `NewAxis` elements and behaves like
/// [`.collapse_axis()`] by preserving the number of dimensions.
///
/// [`.slice()`]: Self::slice
/// [`.slice_mut()`]: Self::slice_mut
/// [`.slice_move()`]: Self::slice_move
/// [`.slice_collapse()`]: Self::slice_collapse
///
/// When slicing arrays with generic dimensionality, creating an instance of
/// [`SliceInfo`] to pass to the multi-axis slicing methods like [`.slice()`]
/// is awkward. In these cases, it's usually more convenient to use
/// [`.slice_each_axis()`]/[`.slice_each_axis_mut()`]/[`.slice_each_axis_inplace()`]
/// or to create a view and then slice individual axes of the view using
/// methods such as [`.slice_axis_inplace()`] and [`.collapse_axis()`].
///
/// [`.slice_each_axis()`]: Self::slice_each_axis
/// [`.slice_each_axis_mut()`]: Self::slice_each_axis_mut
/// [`.slice_each_axis_inplace()`]: Self::slice_each_axis_inplace
/// [`.slice_axis_inplace()`]: Self::slice_axis_inplace
/// [`.collapse_axis()`]: Self::collapse_axis
///
/// It's possible to take multiple simultaneous *mutable* slices with
/// [`.multi_slice_mut()`] or (for [`ArrayViewMut`] only)
/// [`.multi_slice_move()`].
///
/// [`.multi_slice_mut()`]: Self::multi_slice_mut
/// [`.multi_slice_move()`]: ArrayViewMut#method.multi_slice_move
///
/// ```
/// use ndarray::{arr2, arr3, s, ArrayBase, DataMut, Dimension, NewAxis, Slice};
///
/// // 2 submatrices of 2 rows with 3 elements per row, means a shape of `[2, 2, 3]`.
///
/// let a = arr3(&[[[ 1, 2, 3], // -- 2 rows \_
/// [ 4, 5, 6]], // -- /
/// [[ 7, 8, 9], // \_ 2 submatrices
/// [10, 11, 12]]]); // /
/// // 3 columns ..../.../.../
///
/// assert_eq!(a.shape(), &[2, 2, 3]);
///
/// // Let’s create a slice with
/// //
/// // - Both of the submatrices of the greatest dimension: `..`
/// // - Only the first row in each submatrix: `0..1`
/// // - Every element in each row: `..`
///
/// let b = a.slice(s![.., 0..1, ..]);
/// let c = arr3(&[[[ 1, 2, 3]],
/// [[ 7, 8, 9]]]);
/// assert_eq!(b, c);
/// assert_eq!(b.shape(), &[2, 1, 3]);
///
/// // Let’s create a slice with
/// //
/// // - Both submatrices of the greatest dimension: `..`
/// // - The last row in each submatrix: `-1..`
/// // - Row elements in reverse order: `..;-1`
/// let d = a.slice(s![.., -1.., ..;-1]);
/// let e = arr3(&[[[ 6, 5, 4]],
/// [[12, 11, 10]]]);
/// assert_eq!(d, e);
/// assert_eq!(d.shape(), &[2, 1, 3]);
///
/// // Let’s create a slice while selecting a subview and inserting a new axis with
/// //
/// // - Both submatrices of the greatest dimension: `..`
/// // - The last row in each submatrix, removing that axis: `-1`
/// // - Row elements in reverse order: `..;-1`
/// // - A new axis at the end.
/// let f = a.slice(s![.., -1, ..;-1, NewAxis]);
/// let g = arr3(&[[ [6], [5], [4]],
/// [[12], [11], [10]]]);
/// assert_eq!(f, g);
/// assert_eq!(f.shape(), &[2, 3, 1]);
///
/// // Let's take two disjoint, mutable slices of a matrix with
/// //
/// // - One containing all the even-index columns in the matrix
/// // - One containing all the odd-index columns in the matrix
/// let mut h = arr2(&[[0, 1, 2, 3],
/// [4, 5, 6, 7]]);
/// let (s0, s1) = h.multi_slice_mut((s![.., ..;2], s![.., 1..;2]));
/// let i = arr2(&[[0, 2],
/// [4, 6]]);
/// let j = arr2(&[[1, 3],
/// [5, 7]]);
/// assert_eq!(s0, i);
/// assert_eq!(s1, j);
///
/// // Generic function which assigns the specified value to the elements which
/// // have indices in the lower half along all axes.
/// fn fill_lower<S, D>(arr: &mut ArrayBase<S, D>, x: S::Elem)
/// where
/// S: DataMut,
/// S::Elem: Clone,
/// D: Dimension,
/// {
/// arr.slice_each_axis_mut(|ax| Slice::from(0..ax.len / 2)).fill(x);
/// }
/// fill_lower(&mut h, 9);
/// let k = arr2(&[[9, 9, 2, 3],
/// [4, 5, 6, 7]]);
/// assert_eq!(h, k);
/// ```
///
/// ## Subviews
///
/// Subview methods allow you to restrict the array view while removing one
/// axis from the array. Methods for selecting individual subviews include
/// [`.index_axis()`], [`.index_axis_mut()`], [`.index_axis_move()`], and
/// [`.index_axis_inplace()`]. You can also select a subview by using a single
/// index instead of a range when slicing. Some other methods, such as
/// [`.fold_axis()`], [`.axis_iter()`], [`.axis_iter_mut()`],
/// [`.outer_iter()`], and [`.outer_iter_mut()`] operate on all the subviews
/// along an axis.
///
/// A related method is [`.collapse_axis()`], which modifies the view in the
/// same way as [`.index_axis()`] except for removing the collapsed axis, since
/// it operates *in place*. The length of the axis becomes 1.
///
/// Methods for selecting an individual subview take two arguments: `axis` and
/// `index`.
///
/// [`.axis_iter()`]: Self::axis_iter
/// [`.axis_iter_mut()`]: Self::axis_iter_mut
/// [`.fold_axis()`]: Self::fold_axis
/// [`.index_axis()`]: Self::index_axis
/// [`.index_axis_inplace()`]: Self::index_axis_inplace
/// [`.index_axis_mut()`]: Self::index_axis_mut
/// [`.index_axis_move()`]: Self::index_axis_move
/// [`.collapse_axis()`]: Self::collapse_axis
/// [`.outer_iter()`]: Self::outer_iter
/// [`.outer_iter_mut()`]: Self::outer_iter_mut
///
/// ```
///
/// use ndarray::{arr3, aview1, aview2, s, Axis};
///
///
/// // 2 submatrices of 2 rows with 3 elements per row, means a shape of `[2, 2, 3]`.
///
/// let a = arr3(&[[[ 1, 2, 3], // \ axis 0, submatrix 0
/// [ 4, 5, 6]], // /
/// [[ 7, 8, 9], // \ axis 0, submatrix 1
/// [10, 11, 12]]]); // /
/// // \
/// // axis 2, column 0
///
/// assert_eq!(a.shape(), &[2, 2, 3]);
///
/// // Let’s take a subview along the greatest dimension (axis 0),
/// // taking submatrix 0, then submatrix 1
///
/// let sub_0 = a.index_axis(Axis(0), 0);
/// let sub_1 = a.index_axis(Axis(0), 1);
///
/// assert_eq!(sub_0, aview2(&[[ 1, 2, 3],
/// [ 4, 5, 6]]));
/// assert_eq!(sub_1, aview2(&[[ 7, 8, 9],
/// [10, 11, 12]]));
/// assert_eq!(sub_0.shape(), &[2, 3]);
///
/// // This is the subview picking only axis 2, column 0
/// let sub_col = a.index_axis(Axis(2), 0);
///
/// assert_eq!(sub_col, aview2(&[[ 1, 4],
/// [ 7, 10]]));
///
/// // You can take multiple subviews at once (and slice at the same time)
/// let double_sub = a.slice(s![1, .., 0]);
/// assert_eq!(double_sub, aview1(&[7, 10]));
/// ```
///
/// ## Arithmetic Operations
///
/// Arrays support all arithmetic operations the same way: they apply elementwise.
///
/// Since the trait implementations are hard to overview, here is a summary.
///
/// ### Binary Operators with Two Arrays
///
/// Let `A` be an array or view of any kind. Let `B` be an array
/// with owned storage (either `Array` or `ArcArray`).
/// Let `C` be an array with mutable data (either `Array`, `ArcArray`
/// or `ArrayViewMut`).
/// The following combinations of operands
/// are supported for an arbitrary binary operator denoted by `@` (it can be
/// `+`, `-`, `*`, `/` and so on).
///
/// - `&A @ &A` which produces a new `Array`
/// - `B @ A` which consumes `B`, updates it with the result, and returns it
/// - `B @ &A` which consumes `B`, updates it with the result, and returns it
/// - `C @= &A` which performs an arithmetic operation in place
///
/// Note that the element type needs to implement the operator trait and the
/// `Clone` trait.
///
/// ```
/// use ndarray::{array, ArrayView1};
///
/// let owned1 = array![1, 2];
/// let owned2 = array![3, 4];
/// let view1 = ArrayView1::from(&[5, 6]);
/// let view2 = ArrayView1::from(&[7, 8]);
/// let mut mutable = array![9, 10];
///
/// let sum1 = &view1 + &view2; // Allocates a new array. Note the explicit `&`.
/// // let sum2 = view1 + &view2; // This doesn't work because `view1` is not an owned array.
/// let sum3 = owned1 + view1; // Consumes `owned1`, updates it, and returns it.
/// let sum4 = owned2 + &view2; // Consumes `owned2`, updates it, and returns it.
/// mutable += &view2; // Updates `mutable` in-place.
/// ```
///
/// ### Binary Operators with Array and Scalar
///
/// The trait [`ScalarOperand`] marks types that can be used in arithmetic
/// with arrays directly. For a scalar `K` the following combinations of operands
/// are supported (scalar can be on either the left or right side, but
/// `ScalarOperand` docs has the detailed conditions).
///
/// - `&A @ K` or `K @ &A` which produces a new `Array`
/// - `B @ K` or `K @ B` which consumes `B`, updates it with the result and returns it
/// - `C @= K` which performs an arithmetic operation in place
///
/// ### Unary Operators
///
/// Let `A` be an array or view of any kind. Let `B` be an array with owned
/// storage (either `Array` or `ArcArray`). The following operands are supported
/// for an arbitrary unary operator denoted by `@` (it can be `-` or `!`).
///
/// - `@&A` which produces a new `Array`
/// - `@B` which consumes `B`, updates it with the result, and returns it
///
/// ## Broadcasting
///
/// Arrays support limited *broadcasting*, where arithmetic operations with
/// array operands of different sizes can be carried out by repeating the
/// elements of the smaller dimension array. See
/// [`.broadcast()`](Self::broadcast) for a more detailed
/// description.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1., 1.],
/// [1., 2.],
/// [0., 3.],
/// [0., 4.]]);
///
/// let b = arr2(&[[0., 1.]]);
///
/// let c = arr2(&[[1., 2.],
/// [1., 3.],
/// [0., 4.],
/// [0., 5.]]);
/// // We can add because the shapes are compatible even if not equal.
/// // The `b` array is shape 1 × 2 but acts like a 4 × 2 array.
/// assert!(
/// c == a + b
/// );
/// ```
///
/// ## Conversions
///
/// ### Conversions Between Array Types
///
/// This table is a summary of the conversions between arrays of different
/// ownership, dimensionality, and element type. All of the conversions in this
/// table preserve the shape of the array.
///
/// <table>
/// <tr>
/// <th rowspan="2">Output</th>
/// <th colspan="5">Input</th>
/// </tr>
///
/// <tr>
/// <td>
///
/// `Array<A, D>`
///
/// </td>
/// <td>
///
/// `ArcArray<A, D>`
///
/// </td>
/// <td>
///
/// `CowArray<'a, A, D>`
///
/// </td>
/// <td>
///
/// `ArrayView<'a, A, D>`
///
/// </td>
/// <td>
///
/// `ArrayViewMut<'a, A, D>`
///
/// </td>
/// </tr>
///
/// <!--Conversions to `Array<A, D>`-->
///
/// <tr>
/// <td>
///
/// `Array<A, D>`
///
/// </td>
/// <td>
///
/// no-op
///
/// </td>
/// <td>
///
/// [`a.into_owned()`][.into_owned()]
///
/// </td>
/// <td>
///
/// [`a.into_owned()`][.into_owned()]
///
/// </td>
/// <td>
///
/// [`a.to_owned()`][.to_owned()]
///
/// </td>
/// <td>
///
/// [`a.to_owned()`][.to_owned()]
///
/// </td>
/// </tr>
///
/// <!--Conversions to `ArcArray<A, D>`-->
///
/// <tr>
/// <td>
///
/// `ArcArray<A, D>`
///
/// </td>
/// <td>
///
/// [`a.into_shared()`][.into_shared()]
///
/// </td>
/// <td>
///
/// no-op
///
/// </td>
/// <td>
///
/// [`a.into_owned().into_shared()`][.into_shared()]
///
/// </td>
/// <td>
///
/// [`a.to_owned().into_shared()`][.into_shared()]
///
/// </td>
/// <td>
///
/// [`a.to_owned().into_shared()`][.into_shared()]
///
/// </td>
/// </tr>
///
/// <!--Conversions to `CowArray<'a, A, D>`-->
///
/// <tr>
/// <td>
///
/// `CowArray<'a, A, D>`
///
/// </td>
/// <td>
///
/// [`CowArray::from(a)`](CowArray#impl-From<ArrayBase<OwnedRepr<A>%2C%20D>>)
///
/// </td>
/// <td>
///
/// [`CowArray::from(a.into_owned())`](CowArray#impl-From<ArrayBase<OwnedRepr<A>%2C%20D>>)
///
/// </td>
/// <td>
///
/// no-op
///
/// </td>
/// <td>
///
/// [`CowArray::from(a)`](CowArray#impl-From<ArrayBase<ViewRepr<%26%27a%20A>%2C%20D>>)
///
/// </td>
/// <td>
///
/// [`CowArray::from(a.view())`](CowArray#impl-From<ArrayBase<ViewRepr<%26%27a%20A>%2C%20D>>)
///
/// </td>
/// </tr>
///
/// <!--Conversions to `ArrayView<'b, A, D>`-->
///
/// <tr>
/// <td>
///
/// `ArrayView<'b, A, D>`
///
/// </td>
/// <td>
///
/// [`a.view()`][.view()]
///
/// </td>
/// <td>
///
/// [`a.view()`][.view()]
///
/// </td>
/// <td>
///
/// [`a.view()`][.view()]
///
/// </td>
/// <td>
///
/// [`a.view()`][.view()] or [`a.reborrow()`][ArrayView::reborrow()]
///
/// </td>
/// <td>
///
/// [`a.view()`][.view()]
///
/// </td>
/// </tr>
///
/// <!--Conversions to `ArrayViewMut<'b, A, D>`-->
///
/// <tr>
/// <td>
///
/// `ArrayViewMut<'b, A, D>`
///
/// </td>
/// <td>
///
/// [`a.view_mut()`][.view_mut()]
///
/// </td>
/// <td>
///
/// [`a.view_mut()`][.view_mut()]
///
/// </td>
/// <td>
///
/// [`a.view_mut()`][.view_mut()]
///
/// </td>
/// <td>
///
/// illegal
///
/// </td>
/// <td>
///
/// [`a.view_mut()`][.view_mut()] or [`a.reborrow()`][ArrayViewMut::reborrow()]
///
/// </td>
/// </tr>
///
/// <!--Conversions to equivalent with dim `D2`-->
///
/// <tr>
/// <td>
///
/// equivalent with dim `D2` (e.g. converting from dynamic dim to const dim)
///
/// </td>
/// <td colspan="5">
///
/// [`a.into_dimensionality::<D2>()`][.into_dimensionality()]
///
/// </td>
/// </tr>
///
/// <!--Conversions to equivalent with dim `IxDyn`-->
///
/// <tr>
/// <td>
///
/// equivalent with dim `IxDyn`
///
/// </td>
/// <td colspan="5">
///
/// [`a.into_dyn()`][.into_dyn()]
///
/// </td>
/// </tr>
///
/// <!--Conversions to `Array<B, D>`-->
///
/// <tr>
/// <td>
///
/// `Array<B, D>` (new element type)
///
/// </td>
/// <td colspan="5">
///
/// [`a.map(|x| x.do_your_conversion())`][.map()]
///
/// </td>
/// </tr>
/// </table>
///
/// ### Conversions Between Arrays and `Vec`s/Slices/Scalars
///
/// This is a table of the safe conversions between arrays and
/// `Vec`s/slices/scalars. Note that some of the return values are actually
/// `Result`/`Option` wrappers around the indicated output types.
///
/// Input | Output | Methods
/// ------|--------|--------
/// `Vec<A>` | `ArrayBase<S: DataOwned, Ix1>` | [`::from_vec()`](Self::from_vec)
/// `Vec<A>` | `ArrayBase<S: DataOwned, D>` | [`::from_shape_vec()`](Self::from_shape_vec)
/// `&[A]` | `ArrayView1<A>` | [`::from()`](ArrayView#method.from)
/// `&[A]` | `ArrayView<A, D>` | [`::from_shape()`](ArrayView#method.from_shape)
/// `&mut [A]` | `ArrayViewMut1<A>` | [`::from()`](ArrayViewMut#method.from)
/// `&mut [A]` | `ArrayViewMut<A, D>` | [`::from_shape()`](ArrayViewMut#method.from_shape)
/// `&ArrayBase<S, Ix1>` | `Vec<A>` | [`.to_vec()`](Self::to_vec)
/// `Array<A, D>` | `Vec<A>` | [`.into_raw_vec()`](Array#method.into_raw_vec)<sup>[1](#into_raw_vec)</sup>
/// `&ArrayBase<S, D>` | `&[A]` | [`.as_slice()`](Self::as_slice)<sup>[2](#req_contig_std)</sup>, [`.as_slice_memory_order()`](Self::as_slice_memory_order)<sup>[3](#req_contig)</sup>
/// `&mut ArrayBase<S: DataMut, D>` | `&mut [A]` | [`.as_slice_mut()`](Self::as_slice_mut)<sup>[2](#req_contig_std)</sup>, [`.as_slice_memory_order_mut()`](Self::as_slice_memory_order_mut)<sup>[3](#req_contig)</sup>
/// `ArrayView<A, D>` | `&[A]` | [`.to_slice()`](ArrayView#method.to_slice)<sup>[2](#req_contig_std)</sup>
/// `ArrayViewMut<A, D>` | `&mut [A]` | [`.into_slice()`](ArrayViewMut#method.into_slice)<sup>[2](#req_contig_std)</sup>
/// `Array0<A>` | `A` | [`.into_scalar()`](Array#method.into_scalar)
///
/// <sup><a name="into_raw_vec">1</a></sup>Returns the data in memory order.
///
/// <sup><a name="req_contig_std">2</a></sup>Works only if the array is
/// contiguous and in standard order.
///
/// <sup><a name="req_contig">3</a></sup>Works only if the array is contiguous.
///
/// The table above does not include all the constructors; it only shows
/// conversions to/from `Vec`s/slices. See
/// [below](#constructor-methods-for-owned-arrays) for more constructors.
///
/// [ArrayView::reborrow()]: ArrayView#method.reborrow
/// [ArrayViewMut::reborrow()]: ArrayViewMut#method.reborrow
/// [.into_dimensionality()]: Self::into_dimensionality
/// [.into_dyn()]: Self::into_dyn
/// [.into_owned()]: Self::into_owned
/// [.into_shared()]: Self::into_shared
/// [.to_owned()]: Self::to_owned
/// [.map()]: Self::map
/// [.view()]: Self::view
/// [.view_mut()]: Self::view_mut
///
/// ### Conversions from Nested `Vec`s/`Array`s
///
/// It's generally a good idea to avoid nested `Vec`/`Array` types, such as
/// `Vec<Vec<A>>` or `Vec<Array2<A>>` because:
///
/// * they require extra heap allocations compared to a single `Array`,
///
/// * they can scatter data all over memory (because of multiple allocations),
///
/// * they cause unnecessary indirection (traversing multiple pointers to reach
/// the data),
///
/// * they don't enforce consistent shape within the nested
/// `Vec`s/`ArrayBase`s, and
///
/// * they are generally more difficult to work with.
///
/// The most common case where users might consider using nested
/// `Vec`s/`Array`s is when creating an array by appending rows/subviews in a
/// loop, where the rows/subviews are computed within the loop. However, there
/// are better ways than using nested `Vec`s/`Array`s.
///
/// If you know ahead-of-time the shape of the final array, the cleanest
/// solution is to allocate the final array before the loop, and then assign
/// the data to it within the loop, like this:
///
/// ```rust
/// use ndarray::{array, Array2, Axis};
///
/// let mut arr = Array2::zeros((2, 3));
/// for (i, mut row) in arr.axis_iter_mut(Axis(0)).enumerate() {
/// // Perform calculations and assign to `row`; this is a trivial example:
/// row.fill(i);
/// }
/// assert_eq!(arr, array![[0, 0, 0], [1, 1, 1]]);
/// ```
///
/// If you don't know ahead-of-time the shape of the final array, then the
/// cleanest solution is generally to append the data to a flat `Vec`, and then
/// convert it to an `Array` at the end with
/// [`::from_shape_vec()`](Self::from_shape_vec). You just have to be careful
/// that the layout of the data (the order of the elements in the flat `Vec`)
/// is correct.
///
/// ```rust
/// use ndarray::{array, Array2};
///
/// let ncols = 3;
/// let mut data = Vec::new();
/// let mut nrows = 0;
/// for i in 0..2 {
/// // Compute `row` and append it to `data`; this is a trivial example:
/// let row = vec![i; ncols];
/// data.extend_from_slice(&row);
/// nrows += 1;
/// }
/// let arr = Array2::from_shape_vec((nrows, ncols), data)?;
/// assert_eq!(arr, array![[0, 0, 0], [1, 1, 1]]);
/// # Ok::<(), ndarray::ShapeError>(())
/// ```
///
/// If neither of these options works for you, and you really need to convert
/// nested `Vec`/`Array` instances to an `Array`, the cleanest solution is
/// generally to use [`Iterator::flatten()`]
/// to get a flat `Vec`, and then convert the `Vec` to an `Array` with
/// [`::from_shape_vec()`](Self::from_shape_vec), like this:
///
/// ```rust
/// use ndarray::{array, Array2, Array3};
///
/// let nested: Vec<Array2<i32>> = vec![
/// array![[1, 2, 3], [4, 5, 6]],
/// array![[7, 8, 9], [10, 11, 12]],
/// ];
/// let inner_shape = nested[0].dim();
/// let shape = (nested.len(), inner_shape.0, inner_shape.1);
/// let flat: Vec<i32> = nested.iter().flatten().cloned().collect();
/// let arr = Array3::from_shape_vec(shape, flat)?;
/// assert_eq!(arr, array![
/// [[1, 2, 3], [4, 5, 6]],
/// [[7, 8, 9], [10, 11, 12]],
/// ]);
/// # Ok::<(), ndarray::ShapeError>(())
/// ```
///
/// Note that this implementation assumes that the nested `Vec`s are all the
/// same shape and that the `Vec` is non-empty. Depending on your application,
/// it may be a good idea to add checks for these assumptions and possibly
/// choose a different way to handle the empty case.
///
// # For implementors
//
// All methods must uphold the following constraints:
//
// 1. `data` must correctly represent the data buffer / ownership information,
// `ptr` must point into the data represented by `data`, and the `dim` and
// `strides` must be consistent with `data`. For example,
//
// * If `data` is `OwnedRepr<A>`, all elements represented by `ptr`, `dim`,
// and `strides` must be owned by the `Vec` and not aliased by multiple
// indices.
//
// * If `data` is `ViewRepr<&'a mut A>`, all elements represented by `ptr`,
// `dim`, and `strides` must be exclusively borrowed and not aliased by
// multiple indices.
//
// 2. If the type of `data` implements `Data`, then `ptr` must be aligned.
//
// 3. `ptr` must be non-null, and it must be safe to [`.offset()`] `ptr` by
// zero.
//
// 4. It must be safe to [`.offset()`] the pointer repeatedly along all axes
// and calculate the `count`s for the `.offset()` calls without overflow,
// even if the array is empty or the elements are zero-sized.
//
// More specifically, the set of all possible (signed) offset counts
// relative to `ptr` can be determined by the following (the casts and
// arithmetic must not overflow):
//
// ```rust
// /// Returns all the possible offset `count`s relative to `ptr`.
// fn all_offset_counts(shape: &[usize], strides: &[isize]) -> BTreeSet<isize> {
// assert_eq!(shape.len(), strides.len());
// let mut all_offsets = BTreeSet::<isize>::new();
// all_offsets.insert(0);
// for axis in 0..shape.len() {
// let old_offsets = all_offsets.clone();
// for index in 0..shape[axis] {
// assert!(index <= isize::MAX as usize);
// let off = (index as isize).checked_mul(strides[axis]).unwrap();
// for &old_offset in &old_offsets {
// all_offsets.insert(old_offset.checked_add(off).unwrap());
// }
// }
// }
// all_offsets
// }
// ```
//
// Note that it must be safe to offset the pointer *repeatedly* along all
// axes, so in addition for it being safe to offset `ptr` by each of these
// counts, the difference between the least and greatest address reachable
// by these offsets in units of `A` and in units of bytes must not be
// greater than `isize::MAX`.
//
// In other words,
//
// * All possible pointers generated by moving along all axes must be in
// bounds or one byte past the end of a single allocation with element
// type `A`. The only exceptions are if the array is empty or the element
// type is zero-sized. In these cases, `ptr` may be dangling, but it must
// still be safe to [`.offset()`] the pointer along the axes.
//
// * The offset in units of bytes between the least address and greatest
// address by moving along all axes must not exceed `isize::MAX`. This
// constraint prevents the computed offset, in bytes, from overflowing
// `isize` regardless of the starting point due to past offsets.
//
// * The offset in units of `A` between the least address and greatest
// address by moving along all axes must not exceed `isize::MAX`. This
// constraint prevents overflow when calculating the `count` parameter to
// [`.offset()`] regardless of the starting point due to past offsets.
//
// For example, if the shape is [2, 0, 3] and the strides are [3, 6, -1],
// the offsets of interest relative to `ptr` are -2, -1, 0, 1, 2, 3. So,
// `ptr.offset(-2)`, `ptr.offset(-1)`, …, `ptr.offset(3)` must be pointers
// within a single allocation with element type `A`; `(3 - (-2)) *
// size_of::<A>()` must not exceed `isize::MAX`, and `3 - (-2)` must not
// exceed `isize::MAX`. Note that this is a requirement even though the
// array is empty (axis 1 has length 0).
//
// A dangling pointer can be used when creating an empty array, but this
// usually means all the strides have to be zero. A dangling pointer that
// can safely be offset by zero bytes can be constructed with
// `::std::ptr::NonNull::<A>::dangling().as_ptr()`. (It isn't entirely clear
// from the documentation that a pointer created this way is safe to
// `.offset()` at all, even by zero bytes, but the implementation of
// `Vec<A>` does this, so we can too. See rust-lang/rust#54857 for details.)
//
// 5. The product of non-zero axis lengths must not exceed `isize::MAX`. (This
// also implies that the length of any individual axis must not exceed
// `isize::MAX`, and an array can contain at most `isize::MAX` elements.)
// This constraint makes various calculations easier because they don't have
// to worry about overflow and axis lengths can be freely cast to `isize`.
//
// Constraints 2–5 are carefully designed such that if they're upheld for the
// array, they're also upheld for any subset of axes of the array as well as
// slices/subviews/reshapes of the array. This is important for iterators that
// produce subviews (and other similar cases) to be safe without extra (easy to
// forget) checks for zero-length axes. Constraint 1 is similarly upheld for
// any subset of axes and slices/subviews/reshapes, except when removing a
// zero-length axis (since if the other axes are non-zero-length, that would
// allow accessing elements that should not be possible to access).
//
// Method/function implementations can rely on these constraints being upheld.
// The constraints can be temporarily violated within a method/function
// implementation since `ArrayBase` doesn't implement `Drop` and `&mut
// ArrayBase` is `!UnwindSafe`, but the implementation must not call
// methods/functions on the array while it violates the constraints.
//
// Users of the `ndarray` crate cannot rely on these constraints because they
// may change in the future.
//
// [`.offset()`]: https://doc.rust-lang.org/stable/std/primitive.pointer.html#method.offset-1
pub struct ArrayBase<S, D>
where
S: RawData,
{
/// Data buffer / ownership information. (If owned, contains the data
/// buffer; if borrowed, contains the lifetime and mutability.)
data: S,
/// A non-null pointer into the buffer held by `data`; may point anywhere
/// in its range. If `S: Data`, this pointer must be aligned.
ptr: std::ptr::NonNull<S::Elem>,
/// The lengths of the axes.
dim: D,
/// The element count stride per axis. To be parsed as `isize`.
strides: D,
}
/// An array where the data has shared ownership and is copy on write.
///
/// The `ArcArray<A, D>` is parameterized by `A` for the element type and `D` for
/// the dimensionality.
///
/// It can act as both an owner as the data as well as a shared reference (view
/// like).
/// Calling a method for mutating elements on `ArcArray`, for example
/// [`view_mut()`](ArrayBase::view_mut) or
/// [`get_mut()`](ArrayBase::get_mut), will break sharing and
/// require a clone of the data (if it is not uniquely held).
///
/// `ArcArray` uses atomic reference counting like `Arc`, so it is `Send` and
/// `Sync` (when allowed by the element type of the array too).
///
/// **[`ArrayBase`]** is used to implement both the owned
/// arrays and the views; see its docs for an overview of all array features.
///
/// See also:
///
/// + [Constructor Methods for Owned Arrays](ArrayBase#constructor-methods-for-owned-arrays)
/// + [Methods For All Array Types](ArrayBase#methods-for-all-array-types)
pub type ArcArray<A, D> = ArrayBase<OwnedArcRepr<A>, D>;
/// An array that owns its data uniquely.
///
/// `Array` is the main n-dimensional array type, and it owns all its array
/// elements.
///
/// The `Array<A, D>` is parameterized by `A` for the element type and `D` for
/// the dimensionality.
///
/// **[`ArrayBase`]** is used to implement both the owned
/// arrays and the views; see its docs for an overview of all array features.
///
/// See also:
///
/// + [Constructor Methods for Owned Arrays](ArrayBase#constructor-methods-for-owned-arrays)
/// + [Methods For All Array Types](ArrayBase#methods-for-all-array-types)
/// + Dimensionality-specific type alises
/// [`Array1`],
/// [`Array2`],
/// [`Array3`], ...,
/// [`ArrayD`],
/// and so on.
pub type Array<A, D> = ArrayBase<OwnedRepr<A>, D>;
/// An array with copy-on-write behavior.
///
/// An `CowArray` represents either a uniquely owned array or a view of an
/// array. The `'a` corresponds to the lifetime of the view variant.
///
/// This type is analogous to [`std::borrow::Cow`].
/// If a `CowArray` instance is the immutable view variant, then calling a
/// method for mutating elements in the array will cause it to be converted
/// into the owned variant (by cloning all the elements) before the
/// modification is performed.
///
/// Array views have all the methods of an array (see [`ArrayBase`]).
///
/// See also [`ArcArray`], which also provides
/// copy-on-write behavior but has a reference-counted pointer to the data
/// instead of either a view or a uniquely owned copy.
pub type CowArray<'a, A, D> = ArrayBase<CowRepr<'a, A>, D>;
/// A read-only array view.
///
/// An array view represents an array or a part of it, created from
/// an iterator, subview or slice of an array.
///
/// The `ArrayView<'a, A, D>` is parameterized by `'a` for the scope of the
/// borrow, `A` for the element type and `D` for the dimensionality.
///
/// Array views have all the methods of an array (see [`ArrayBase`]).
///
/// See also [`ArrayViewMut`].
pub type ArrayView<'a, A, D> = ArrayBase<ViewRepr<&'a A>, D>;
/// A read-write array view.
///
/// An array view represents an array or a part of it, created from
/// an iterator, subview or slice of an array.
///
/// The `ArrayViewMut<'a, A, D>` is parameterized by `'a` for the scope of the
/// borrow, `A` for the element type and `D` for the dimensionality.
///
/// Array views have all the methods of an array (see [`ArrayBase`]).
///
/// See also [`ArrayView`].
pub type ArrayViewMut<'a, A, D> = ArrayBase<ViewRepr<&'a mut A>, D>;
/// A read-only array view without a lifetime.
///
/// This is similar to [`ArrayView`] but does not carry any lifetime or
/// ownership information, and its data cannot be read without an unsafe
/// conversion into an [`ArrayView`]. The relationship between `RawArrayView`
/// and [`ArrayView`] is somewhat analogous to the relationship between `*const
/// T` and `&T`, but `RawArrayView` has additional requirements that `*const T`
/// does not, such as non-nullness.
///
/// The `RawArrayView<A, D>` is parameterized by `A` for the element type and
/// `D` for the dimensionality.
///
/// Raw array views have all the methods of an array (see
/// [`ArrayBase`]).
///
/// See also [`RawArrayViewMut`].
///
/// # Warning
///
/// You can't use this type with an arbitrary raw pointer; see
/// [`from_shape_ptr`](#method.from_shape_ptr) for details.
pub type RawArrayView<A, D> = ArrayBase<RawViewRepr<*const A>, D>;
/// A mutable array view without a lifetime.
///
/// This is similar to [`ArrayViewMut`] but does not carry any lifetime or
/// ownership information, and its data cannot be read/written without an
/// unsafe conversion into an [`ArrayViewMut`]. The relationship between
/// `RawArrayViewMut` and [`ArrayViewMut`] is somewhat analogous to the
/// relationship between `*mut T` and `&mut T`, but `RawArrayViewMut` has
/// additional requirements that `*mut T` does not, such as non-nullness.
///
/// The `RawArrayViewMut<A, D>` is parameterized by `A` for the element type
/// and `D` for the dimensionality.
///
/// Raw array views have all the methods of an array (see
/// [`ArrayBase`]).
///
/// See also [`RawArrayView`].
///
/// # Warning
///
/// You can't use this type with an arbitrary raw pointer; see
/// [`from_shape_ptr`](#method.from_shape_ptr) for details.
pub type RawArrayViewMut<A, D> = ArrayBase<RawViewRepr<*mut A>, D>;
pub use data_repr::OwnedRepr;
/// ArcArray's representation.
///
/// *Don’t use this type directly—use the type alias
/// [`ArcArray`] for the array type!*
#[derive(Debug)]
pub struct OwnedArcRepr<A>(Arc<OwnedRepr<A>>);
impl<A> Clone for OwnedArcRepr<A> {
fn clone(&self) -> Self {
OwnedArcRepr(self.0.clone())
}
}
/// Array pointer’s representation.
///
/// *Don’t use this type directly—use the type aliases
/// [`RawArrayView`] / [`RawArrayViewMut`] for the array type!*
#[derive(Copy, Clone)]
// This is just a marker type, to carry the mutability and element type.
pub struct RawViewRepr<A> {
ptr: PhantomData<A>,
}
impl<A> RawViewRepr<A> {
#[inline(always)]
fn new() -> Self {
RawViewRepr { ptr: PhantomData }
}
}
/// Array view’s representation.
///
/// *Don’t use this type directly—use the type aliases
/// [`ArrayView`] / [`ArrayViewMut`] for the array type!*
#[derive(Copy, Clone)]
// This is just a marker type, to carry the lifetime parameter.
pub struct ViewRepr<A> {
life: PhantomData<A>,
}
impl<A> ViewRepr<A> {
#[inline(always)]
fn new() -> Self {
ViewRepr { life: PhantomData }
}
}
/// CowArray's representation.
///
/// *Don't use this type directly—use the type alias
/// [`CowArray`] for the array type!*
pub enum CowRepr<'a, A> {
/// Borrowed data.
View(ViewRepr<&'a A>),
/// Owned data.
Owned(OwnedRepr<A>),
}
impl<'a, A> CowRepr<'a, A> {
/// Returns `true` iff the data is the `View` variant.
pub fn is_view(&self) -> bool {
match self {
CowRepr::View(_) => true,
CowRepr::Owned(_) => false,
}
}
/// Returns `true` iff the data is the `Owned` variant.
pub fn is_owned(&self) -> bool {
match self {
CowRepr::View(_) => false,
CowRepr::Owned(_) => true,
}
}
}
// NOTE: The order of modules decides in which order methods on the type ArrayBase
// (mainly mentioning that as the most relevant type) show up in the documentation.
// Consider the doc effect of ordering modules here.
mod impl_clone;
mod impl_internal_constructors;
mod impl_constructors;
mod impl_methods;
mod impl_owned_array;
mod impl_special_element_types;
/// Private Methods
impl<A, S, D> ArrayBase<S, D>
where
S: Data<Elem = A>,
D: Dimension,
{
#[inline]
fn broadcast_unwrap<E>(&self, dim: E) -> ArrayView<'_, A, E>
where
E: Dimension,
{
#[cold]
#[inline(never)]
fn broadcast_panic<D, E>(from: &D, to: &E) -> !
where
D: Dimension,
E: Dimension,
{
panic!(
"ndarray: could not broadcast array from shape: {:?} to: {:?}",
from.slice(),
to.slice()
)
}
match self.broadcast(dim.clone()) {
Some(it) => it,
None => broadcast_panic(&self.dim, &dim),
}
}
// Broadcast to dimension `E`, without checking that the dimensions match
// (Checked in debug assertions).
#[inline]
fn broadcast_assume<E>(&self, dim: E) -> ArrayView<'_, A, E>
where
E: Dimension,
{
let dim = dim.into_dimension();
debug_assert_eq!(self.shape(), dim.slice());
let ptr = self.ptr;
let mut strides = dim.clone();
strides.slice_mut().copy_from_slice(self.strides.slice());
unsafe { ArrayView::new(ptr, dim, strides) }
}
fn raw_strides(&self) -> D {
self.strides.clone()
}
/// Remove array axis `axis` and return the result.
fn try_remove_axis(self, axis: Axis) -> ArrayBase<S, D::Smaller> {
let d = self.dim.try_remove_axis(axis);
let s = self.strides.try_remove_axis(axis);
// safe because new dimension, strides allow access to a subset of old data
unsafe {
self.with_strides_dim(s, d)
}
}
}
// parallel methods
#[cfg(feature = "rayon")]
extern crate rayon_ as rayon;
#[cfg(feature = "rayon")]
pub mod parallel;
mod impl_1d;
mod impl_2d;
mod impl_dyn;
mod numeric;
pub mod linalg;
mod impl_ops;
pub use crate::impl_ops::ScalarOperand;
#[cfg(any(feature = "approx", feature = "approx-0_5"))]
mod array_approx;
// Array view methods
mod impl_views;
// Array raw view methods
mod impl_raw_views;
// Copy-on-write array methods
mod impl_cow;
/// Returns `true` if the pointer is aligned.
pub(crate) fn is_aligned<T>(ptr: *const T) -> bool {
(ptr as usize) % ::std::mem::align_of::<T>() == 0
}