1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
// Copyright 2014-2020 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::imp_prelude::*;
#[cfg(feature = "blas")]
use crate::dimension::offset_from_low_addr_ptr_to_logical_ptr;
use crate::numeric_util;
use crate::{LinalgScalar, Zip};
use std::any::TypeId;
use std::mem::MaybeUninit;
use alloc::vec::Vec;
use num_complex::Complex;
use num_complex::{Complex32 as c32, Complex64 as c64};
#[cfg(feature = "blas")]
use libc::c_int;
#[cfg(feature = "blas")]
use std::cmp;
#[cfg(feature = "blas")]
use std::mem::swap;
#[cfg(feature = "blas")]
use cblas_sys as blas_sys;
#[cfg(feature = "blas")]
use cblas_sys::{CblasNoTrans, CblasRowMajor, CblasTrans, CBLAS_LAYOUT};
/// len of vector before we use blas
#[cfg(feature = "blas")]
const DOT_BLAS_CUTOFF: usize = 32;
/// side of matrix before we use blas
#[cfg(feature = "blas")]
const GEMM_BLAS_CUTOFF: usize = 7;
#[cfg(feature = "blas")]
#[allow(non_camel_case_types)]
type blas_index = c_int; // blas index type
impl<A, S> ArrayBase<S, Ix1>
where
S: Data<Elem = A>,
{
/// Perform dot product or matrix multiplication of arrays `self` and `rhs`.
///
/// `Rhs` may be either a one-dimensional or a two-dimensional array.
///
/// If `Rhs` is one-dimensional, then the operation is a vector dot
/// product, which is the sum of the elementwise products (no conjugation
/// of complex operands, and thus not their inner product). In this case,
/// `self` and `rhs` must be the same length.
///
/// If `Rhs` is two-dimensional, then the operation is matrix
/// multiplication, where `self` is treated as a row vector. In this case,
/// if `self` is shape *M*, then `rhs` is shape *M* × *N* and the result is
/// shape *N*.
///
/// **Panics** if the array shapes are incompatible.<br>
/// *Note:* If enabled, uses blas `dot` for elements of `f32, f64` when memory
/// layout allows.
pub fn dot<Rhs>(&self, rhs: &Rhs) -> <Self as Dot<Rhs>>::Output
where
Self: Dot<Rhs>,
{
Dot::dot(self, rhs)
}
fn dot_generic<S2>(&self, rhs: &ArrayBase<S2, Ix1>) -> A
where
S2: Data<Elem = A>,
A: LinalgScalar,
{
debug_assert_eq!(self.len(), rhs.len());
assert!(self.len() == rhs.len());
if let Some(self_s) = self.as_slice() {
if let Some(rhs_s) = rhs.as_slice() {
return numeric_util::unrolled_dot(self_s, rhs_s);
}
}
let mut sum = A::zero();
for i in 0..self.len() {
unsafe {
sum = sum + *self.uget(i) * *rhs.uget(i);
}
}
sum
}
#[cfg(not(feature = "blas"))]
fn dot_impl<S2>(&self, rhs: &ArrayBase<S2, Ix1>) -> A
where
S2: Data<Elem = A>,
A: LinalgScalar,
{
self.dot_generic(rhs)
}
#[cfg(feature = "blas")]
fn dot_impl<S2>(&self, rhs: &ArrayBase<S2, Ix1>) -> A
where
S2: Data<Elem = A>,
A: LinalgScalar,
{
// Use only if the vector is large enough to be worth it
if self.len() >= DOT_BLAS_CUTOFF {
debug_assert_eq!(self.len(), rhs.len());
assert!(self.len() == rhs.len());
macro_rules! dot {
($ty:ty, $func:ident) => {{
if blas_compat_1d::<$ty, _>(self) && blas_compat_1d::<$ty, _>(rhs) {
unsafe {
let (lhs_ptr, n, incx) =
blas_1d_params(self.ptr.as_ptr(), self.len(), self.strides()[0]);
let (rhs_ptr, _, incy) =
blas_1d_params(rhs.ptr.as_ptr(), rhs.len(), rhs.strides()[0]);
let ret = blas_sys::$func(
n,
lhs_ptr as *const $ty,
incx,
rhs_ptr as *const $ty,
incy,
);
return cast_as::<$ty, A>(&ret);
}
}
}};
}
dot! {f32, cblas_sdot};
dot! {f64, cblas_ddot};
}
self.dot_generic(rhs)
}
}
/// Return a pointer to the starting element in BLAS's view.
///
/// BLAS wants a pointer to the element with lowest address,
/// which agrees with our pointer for non-negative strides, but
/// is at the opposite end for negative strides.
#[cfg(feature = "blas")]
unsafe fn blas_1d_params<A>(
ptr: *const A,
len: usize,
stride: isize,
) -> (*const A, blas_index, blas_index) {
// [x x x x]
// ^--ptr
// stride = -1
// ^--blas_ptr = ptr + (len - 1) * stride
if stride >= 0 || len == 0 {
(ptr, len as blas_index, stride as blas_index)
} else {
let ptr = ptr.offset((len - 1) as isize * stride);
(ptr, len as blas_index, stride as blas_index)
}
}
/// Matrix Multiplication
///
/// For two-dimensional arrays, the dot method computes the matrix
/// multiplication.
pub trait Dot<Rhs> {
/// The result of the operation.
///
/// For two-dimensional arrays: a rectangular array.
type Output;
fn dot(&self, rhs: &Rhs) -> Self::Output;
}
impl<A, S, S2> Dot<ArrayBase<S2, Ix1>> for ArrayBase<S, Ix1>
where
S: Data<Elem = A>,
S2: Data<Elem = A>,
A: LinalgScalar,
{
type Output = A;
/// Compute the dot product of one-dimensional arrays.
///
/// The dot product is a sum of the elementwise products (no conjugation
/// of complex operands, and thus not their inner product).
///
/// **Panics** if the arrays are not of the same length.<br>
/// *Note:* If enabled, uses blas `dot` for elements of `f32, f64` when memory
/// layout allows.
fn dot(&self, rhs: &ArrayBase<S2, Ix1>) -> A {
self.dot_impl(rhs)
}
}
impl<A, S, S2> Dot<ArrayBase<S2, Ix2>> for ArrayBase<S, Ix1>
where
S: Data<Elem = A>,
S2: Data<Elem = A>,
A: LinalgScalar,
{
type Output = Array<A, Ix1>;
/// Perform the matrix multiplication of the row vector `self` and
/// rectangular matrix `rhs`.
///
/// The array shapes must agree in the way that
/// if `self` is *M*, then `rhs` is *M* × *N*.
///
/// Return a result array with shape *N*.
///
/// **Panics** if shapes are incompatible.
fn dot(&self, rhs: &ArrayBase<S2, Ix2>) -> Array<A, Ix1> {
rhs.t().dot(self)
}
}
impl<A, S> ArrayBase<S, Ix2>
where
S: Data<Elem = A>,
{
/// Perform matrix multiplication of rectangular arrays `self` and `rhs`.
///
/// `Rhs` may be either a one-dimensional or a two-dimensional array.
///
/// If Rhs is two-dimensional, they array shapes must agree in the way that
/// if `self` is *M* × *N*, then `rhs` is *N* × *K*.
///
/// Return a result array with shape *M* × *K*.
///
/// **Panics** if shapes are incompatible or the number of elements in the
/// result would overflow `isize`.
///
/// *Note:* If enabled, uses blas `gemv/gemm` for elements of `f32, f64`
/// when memory layout allows. The default matrixmultiply backend
/// is otherwise used for `f32, f64` for all memory layouts.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1., 2.],
/// [0., 1.]]);
/// let b = arr2(&[[1., 2.],
/// [2., 3.]]);
///
/// assert!(
/// a.dot(&b) == arr2(&[[5., 8.],
/// [2., 3.]])
/// );
/// ```
pub fn dot<Rhs>(&self, rhs: &Rhs) -> <Self as Dot<Rhs>>::Output
where
Self: Dot<Rhs>,
{
Dot::dot(self, rhs)
}
}
impl<A, S, S2> Dot<ArrayBase<S2, Ix2>> for ArrayBase<S, Ix2>
where
S: Data<Elem = A>,
S2: Data<Elem = A>,
A: LinalgScalar,
{
type Output = Array2<A>;
fn dot(&self, b: &ArrayBase<S2, Ix2>) -> Array2<A> {
let a = self.view();
let b = b.view();
let ((m, k), (k2, n)) = (a.dim(), b.dim());
if k != k2 || m.checked_mul(n).is_none() {
dot_shape_error(m, k, k2, n);
}
let lhs_s0 = a.strides()[0];
let rhs_s0 = b.strides()[0];
let column_major = lhs_s0 == 1 && rhs_s0 == 1;
// A is Copy so this is safe
let mut v = Vec::with_capacity(m * n);
let mut c;
unsafe {
v.set_len(m * n);
c = Array::from_shape_vec_unchecked((m, n).set_f(column_major), v);
}
mat_mul_impl(A::one(), &a, &b, A::zero(), &mut c.view_mut());
c
}
}
/// Assumes that `m` and `n` are ≤ `isize::MAX`.
#[cold]
#[inline(never)]
fn dot_shape_error(m: usize, k: usize, k2: usize, n: usize) -> ! {
match m.checked_mul(n) {
Some(len) if len <= ::std::isize::MAX as usize => {}
_ => panic!("ndarray: shape {} × {} overflows isize", m, n),
}
panic!(
"ndarray: inputs {} × {} and {} × {} are not compatible for matrix multiplication",
m, k, k2, n
);
}
#[cold]
#[inline(never)]
fn general_dot_shape_error(m: usize, k: usize, k2: usize, n: usize, c1: usize, c2: usize) -> ! {
panic!("ndarray: inputs {} × {}, {} × {}, and output {} × {} are not compatible for matrix multiplication",
m, k, k2, n, c1, c2);
}
/// Perform the matrix multiplication of the rectangular array `self` and
/// column vector `rhs`.
///
/// The array shapes must agree in the way that
/// if `self` is *M* × *N*, then `rhs` is *N*.
///
/// Return a result array with shape *M*.
///
/// **Panics** if shapes are incompatible.
impl<A, S, S2> Dot<ArrayBase<S2, Ix1>> for ArrayBase<S, Ix2>
where
S: Data<Elem = A>,
S2: Data<Elem = A>,
A: LinalgScalar,
{
type Output = Array<A, Ix1>;
fn dot(&self, rhs: &ArrayBase<S2, Ix1>) -> Array<A, Ix1> {
let ((m, a), n) = (self.dim(), rhs.dim());
if a != n {
dot_shape_error(m, a, n, 1);
}
// Avoid initializing the memory in vec -- set it during iteration
unsafe {
let mut c = Array1::uninit(m);
general_mat_vec_mul_impl(A::one(), self, rhs, A::zero(), c.raw_view_mut().cast::<A>());
c.assume_init()
}
}
}
impl<A, S, D> ArrayBase<S, D>
where
S: Data<Elem = A>,
D: Dimension,
{
/// Perform the operation `self += alpha * rhs` efficiently, where
/// `alpha` is a scalar and `rhs` is another array. This operation is
/// also known as `axpy` in BLAS.
///
/// If their shapes disagree, `rhs` is broadcast to the shape of `self`.
///
/// **Panics** if broadcasting isn’t possible.
pub fn scaled_add<S2, E>(&mut self, alpha: A, rhs: &ArrayBase<S2, E>)
where
S: DataMut,
S2: Data<Elem = A>,
A: LinalgScalar,
E: Dimension,
{
self.zip_mut_with(rhs, move |y, &x| *y = *y + (alpha * x));
}
}
// mat_mul_impl uses ArrayView arguments to send all array kinds into
// the same instantiated implementation.
#[cfg(not(feature = "blas"))]
use self::mat_mul_general as mat_mul_impl;
#[cfg(feature = "blas")]
fn mat_mul_impl<A>(
alpha: A,
lhs: &ArrayView2<'_, A>,
rhs: &ArrayView2<'_, A>,
beta: A,
c: &mut ArrayViewMut2<'_, A>,
) where
A: LinalgScalar,
{
// size cutoff for using BLAS
let cut = GEMM_BLAS_CUTOFF;
let ((mut m, a), (_, mut n)) = (lhs.dim(), rhs.dim());
if !(m > cut || n > cut || a > cut)
|| !(same_type::<A, f32>()
|| same_type::<A, f64>()
|| same_type::<A, c32>()
|| same_type::<A, c64>())
{
return mat_mul_general(alpha, lhs, rhs, beta, c);
}
{
// Use `c` for c-order and `f` for an f-order matrix
// We can handle c * c, f * f generally and
// c * f and f * c if the `f` matrix is square.
let mut lhs_ = lhs.view();
let mut rhs_ = rhs.view();
let mut c_ = c.view_mut();
let lhs_s0 = lhs_.strides()[0];
let rhs_s0 = rhs_.strides()[0];
let both_f = lhs_s0 == 1 && rhs_s0 == 1;
let mut lhs_trans = CblasNoTrans;
let mut rhs_trans = CblasNoTrans;
if both_f {
// A^t B^t = C^t => B A = C
let lhs_t = lhs_.reversed_axes();
lhs_ = rhs_.reversed_axes();
rhs_ = lhs_t;
c_ = c_.reversed_axes();
swap(&mut m, &mut n);
} else if lhs_s0 == 1 && m == a {
lhs_ = lhs_.reversed_axes();
lhs_trans = CblasTrans;
} else if rhs_s0 == 1 && a == n {
rhs_ = rhs_.reversed_axes();
rhs_trans = CblasTrans;
}
macro_rules! gemm_scalar_cast {
(f32, $var:ident) => {
cast_as(&$var)
};
(f64, $var:ident) => {
cast_as(&$var)
};
(c32, $var:ident) => {
&$var as *const A as *const _
};
(c64, $var:ident) => {
&$var as *const A as *const _
};
}
macro_rules! gemm {
($ty:tt, $gemm:ident) => {
if blas_row_major_2d::<$ty, _>(&lhs_)
&& blas_row_major_2d::<$ty, _>(&rhs_)
&& blas_row_major_2d::<$ty, _>(&c_)
{
let (m, k) = match lhs_trans {
CblasNoTrans => lhs_.dim(),
_ => {
let (rows, cols) = lhs_.dim();
(cols, rows)
}
};
let n = match rhs_trans {
CblasNoTrans => rhs_.raw_dim()[1],
_ => rhs_.raw_dim()[0],
};
// adjust strides, these may [1, 1] for column matrices
let lhs_stride = cmp::max(lhs_.strides()[0] as blas_index, k as blas_index);
let rhs_stride = cmp::max(rhs_.strides()[0] as blas_index, n as blas_index);
let c_stride = cmp::max(c_.strides()[0] as blas_index, n as blas_index);
// gemm is C ← αA^Op B^Op + βC
// Where Op is notrans/trans/conjtrans
unsafe {
blas_sys::$gemm(
CblasRowMajor,
lhs_trans,
rhs_trans,
m as blas_index, // m, rows of Op(a)
n as blas_index, // n, cols of Op(b)
k as blas_index, // k, cols of Op(a)
gemm_scalar_cast!($ty, alpha), // alpha
lhs_.ptr.as_ptr() as *const _, // a
lhs_stride, // lda
rhs_.ptr.as_ptr() as *const _, // b
rhs_stride, // ldb
gemm_scalar_cast!($ty, beta), // beta
c_.ptr.as_ptr() as *mut _, // c
c_stride, // ldc
);
}
return;
}
};
}
gemm!(f32, cblas_sgemm);
gemm!(f64, cblas_dgemm);
gemm!(c32, cblas_cgemm);
gemm!(c64, cblas_zgemm);
}
mat_mul_general(alpha, lhs, rhs, beta, c)
}
/// C ← α A B + β C
fn mat_mul_general<A>(
alpha: A,
lhs: &ArrayView2<'_, A>,
rhs: &ArrayView2<'_, A>,
beta: A,
c: &mut ArrayViewMut2<'_, A>,
) where
A: LinalgScalar,
{
let ((m, k), (_, n)) = (lhs.dim(), rhs.dim());
// common parameters for gemm
let ap = lhs.as_ptr();
let bp = rhs.as_ptr();
let cp = c.as_mut_ptr();
let (rsc, csc) = (c.strides()[0], c.strides()[1]);
if same_type::<A, f32>() {
unsafe {
matrixmultiply::sgemm(
m,
k,
n,
cast_as(&alpha),
ap as *const _,
lhs.strides()[0],
lhs.strides()[1],
bp as *const _,
rhs.strides()[0],
rhs.strides()[1],
cast_as(&beta),
cp as *mut _,
rsc,
csc,
);
}
} else if same_type::<A, f64>() {
unsafe {
matrixmultiply::dgemm(
m,
k,
n,
cast_as(&alpha),
ap as *const _,
lhs.strides()[0],
lhs.strides()[1],
bp as *const _,
rhs.strides()[0],
rhs.strides()[1],
cast_as(&beta),
cp as *mut _,
rsc,
csc,
);
}
} else if same_type::<A, c32>() {
unsafe {
matrixmultiply::cgemm(
matrixmultiply::CGemmOption::Standard,
matrixmultiply::CGemmOption::Standard,
m,
k,
n,
complex_array(cast_as(&alpha)),
ap as *const _,
lhs.strides()[0],
lhs.strides()[1],
bp as *const _,
rhs.strides()[0],
rhs.strides()[1],
complex_array(cast_as(&beta)),
cp as *mut _,
rsc,
csc,
);
}
} else if same_type::<A, c64>() {
unsafe {
matrixmultiply::zgemm(
matrixmultiply::CGemmOption::Standard,
matrixmultiply::CGemmOption::Standard,
m,
k,
n,
complex_array(cast_as(&alpha)),
ap as *const _,
lhs.strides()[0],
lhs.strides()[1],
bp as *const _,
rhs.strides()[0],
rhs.strides()[1],
complex_array(cast_as(&beta)),
cp as *mut _,
rsc,
csc,
);
}
} else {
// It's a no-op if `c` has zero length.
if c.is_empty() {
return;
}
// initialize memory if beta is zero
if beta.is_zero() {
c.fill(beta);
}
let mut i = 0;
let mut j = 0;
loop {
unsafe {
let elt = c.uget_mut((i, j));
*elt = *elt * beta
+ alpha
* (0..k).fold(A::zero(), move |s, x| {
s + *lhs.uget((i, x)) * *rhs.uget((x, j))
});
}
j += 1;
if j == n {
j = 0;
i += 1;
if i == m {
break;
}
}
}
}
}
/// General matrix-matrix multiplication.
///
/// Compute C ← α A B + β C
///
/// The array shapes must agree in the way that
/// if `a` is *M* × *N*, then `b` is *N* × *K* and `c` is *M* × *K*.
///
/// ***Panics*** if array shapes are not compatible<br>
/// *Note:* If enabled, uses blas `gemm` for elements of `f32, f64` when memory
/// layout allows. The default matrixmultiply backend is otherwise used for
/// `f32, f64` for all memory layouts.
pub fn general_mat_mul<A, S1, S2, S3>(
alpha: A,
a: &ArrayBase<S1, Ix2>,
b: &ArrayBase<S2, Ix2>,
beta: A,
c: &mut ArrayBase<S3, Ix2>,
) where
S1: Data<Elem = A>,
S2: Data<Elem = A>,
S3: DataMut<Elem = A>,
A: LinalgScalar,
{
let ((m, k), (k2, n)) = (a.dim(), b.dim());
let (m2, n2) = c.dim();
if k != k2 || m != m2 || n != n2 {
general_dot_shape_error(m, k, k2, n, m2, n2);
} else {
mat_mul_impl(alpha, &a.view(), &b.view(), beta, &mut c.view_mut());
}
}
/// General matrix-vector multiplication.
///
/// Compute y ← α A x + β y
///
/// where A is a *M* × *N* matrix and x is an *N*-element column vector and
/// y an *M*-element column vector (one dimensional arrays).
///
/// ***Panics*** if array shapes are not compatible<br>
/// *Note:* If enabled, uses blas `gemv` for elements of `f32, f64` when memory
/// layout allows.
#[allow(clippy::collapsible_if)]
pub fn general_mat_vec_mul<A, S1, S2, S3>(
alpha: A,
a: &ArrayBase<S1, Ix2>,
x: &ArrayBase<S2, Ix1>,
beta: A,
y: &mut ArrayBase<S3, Ix1>,
) where
S1: Data<Elem = A>,
S2: Data<Elem = A>,
S3: DataMut<Elem = A>,
A: LinalgScalar,
{
unsafe { general_mat_vec_mul_impl(alpha, a, x, beta, y.raw_view_mut()) }
}
/// General matrix-vector multiplication
///
/// Use a raw view for the destination vector, so that it can be uninitialized.
///
/// ## Safety
///
/// The caller must ensure that the raw view is valid for writing.
/// the destination may be uninitialized iff beta is zero.
#[allow(clippy::collapsible_else_if)]
unsafe fn general_mat_vec_mul_impl<A, S1, S2>(
alpha: A,
a: &ArrayBase<S1, Ix2>,
x: &ArrayBase<S2, Ix1>,
beta: A,
y: RawArrayViewMut<A, Ix1>,
) where
S1: Data<Elem = A>,
S2: Data<Elem = A>,
A: LinalgScalar,
{
let ((m, k), k2) = (a.dim(), x.dim());
let m2 = y.dim();
if k != k2 || m != m2 {
general_dot_shape_error(m, k, k2, 1, m2, 1);
} else {
#[cfg(feature = "blas")]
macro_rules! gemv {
($ty:ty, $gemv:ident) => {
if let Some(layout) = blas_layout::<$ty, _>(&a) {
if blas_compat_1d::<$ty, _>(&x) && blas_compat_1d::<$ty, _>(&y) {
// Determine stride between rows or columns. Note that the stride is
// adjusted to at least `k` or `m` to handle the case of a matrix with a
// trivial (length 1) dimension, since the stride for the trivial dimension
// may be arbitrary.
let a_trans = CblasNoTrans;
let a_stride = match layout {
CBLAS_LAYOUT::CblasRowMajor => {
a.strides()[0].max(k as isize) as blas_index
}
CBLAS_LAYOUT::CblasColMajor => {
a.strides()[1].max(m as isize) as blas_index
}
};
// Low addr in memory pointers required for x, y
let x_offset = offset_from_low_addr_ptr_to_logical_ptr(&x.dim, &x.strides);
let x_ptr = x.ptr.as_ptr().sub(x_offset);
let y_offset = offset_from_low_addr_ptr_to_logical_ptr(&y.dim, &y.strides);
let y_ptr = y.ptr.as_ptr().sub(y_offset);
let x_stride = x.strides()[0] as blas_index;
let y_stride = y.strides()[0] as blas_index;
blas_sys::$gemv(
layout,
a_trans,
m as blas_index, // m, rows of Op(a)
k as blas_index, // n, cols of Op(a)
cast_as(&alpha), // alpha
a.ptr.as_ptr() as *const _, // a
a_stride, // lda
x_ptr as *const _, // x
x_stride,
cast_as(&beta), // beta
y_ptr as *mut _, // y
y_stride,
);
return;
}
}
};
}
#[cfg(feature = "blas")]
gemv!(f32, cblas_sgemv);
#[cfg(feature = "blas")]
gemv!(f64, cblas_dgemv);
/* general */
if beta.is_zero() {
// when beta is zero, c may be uninitialized
Zip::from(a.outer_iter()).and(y).for_each(|row, elt| {
elt.write(row.dot(x) * alpha);
});
} else {
Zip::from(a.outer_iter()).and(y).for_each(|row, elt| {
*elt = *elt * beta + row.dot(x) * alpha;
});
}
}
}
/// Kronecker product of 2D matrices.
///
/// The kronecker product of a LxN matrix A and a MxR matrix B is a (L*M)x(N*R)
/// matrix K formed by the block multiplication A_ij * B.
pub fn kron<A, S1, S2>(a: &ArrayBase<S1, Ix2>, b: &ArrayBase<S2, Ix2>) -> Array<A, Ix2>
where
S1: Data<Elem = A>,
S2: Data<Elem = A>,
A: LinalgScalar,
{
let dimar = a.shape()[0];
let dimac = a.shape()[1];
let dimbr = b.shape()[0];
let dimbc = b.shape()[1];
let mut out: Array2<MaybeUninit<A>> = Array2::uninit((
dimar
.checked_mul(dimbr)
.expect("Dimensions of kronecker product output array overflows usize."),
dimac
.checked_mul(dimbc)
.expect("Dimensions of kronecker product output array overflows usize."),
));
Zip::from(out.exact_chunks_mut((dimbr, dimbc)))
.and(a)
.for_each(|out, &a| {
Zip::from(out).and(b).for_each(|out, &b| {
*out = MaybeUninit::new(a * b);
})
});
unsafe { out.assume_init() }
}
#[inline(always)]
/// Return `true` if `A` and `B` are the same type
fn same_type<A: 'static, B: 'static>() -> bool {
TypeId::of::<A>() == TypeId::of::<B>()
}
// Read pointer to type `A` as type `B`.
//
// **Panics** if `A` and `B` are not the same type
fn cast_as<A: 'static + Copy, B: 'static + Copy>(a: &A) -> B {
assert!(same_type::<A, B>(), "expect type {} and {} to match",
std::any::type_name::<A>(), std::any::type_name::<B>());
unsafe { ::std::ptr::read(a as *const _ as *const B) }
}
/// Return the complex in the form of an array [re, im]
#[inline]
fn complex_array<A: 'static + Copy>(z: Complex<A>) -> [A; 2] {
[z.re, z.im]
}
#[cfg(feature = "blas")]
fn blas_compat_1d<A, S>(a: &ArrayBase<S, Ix1>) -> bool
where
S: RawData,
A: 'static,
S::Elem: 'static,
{
if !same_type::<A, S::Elem>() {
return false;
}
if a.len() > blas_index::max_value() as usize {
return false;
}
let stride = a.strides()[0];
if stride == 0
|| stride > blas_index::max_value() as isize
|| stride < blas_index::min_value() as isize
{
return false;
}
true
}
#[cfg(feature = "blas")]
enum MemoryOrder {
C,
F,
}
#[cfg(feature = "blas")]
fn blas_row_major_2d<A, S>(a: &ArrayBase<S, Ix2>) -> bool
where
S: Data,
A: 'static,
S::Elem: 'static,
{
if !same_type::<A, S::Elem>() {
return false;
}
is_blas_2d(&a.dim, &a.strides, MemoryOrder::C)
}
#[cfg(feature = "blas")]
fn blas_column_major_2d<A, S>(a: &ArrayBase<S, Ix2>) -> bool
where
S: Data,
A: 'static,
S::Elem: 'static,
{
if !same_type::<A, S::Elem>() {
return false;
}
is_blas_2d(&a.dim, &a.strides, MemoryOrder::F)
}
#[cfg(feature = "blas")]
fn is_blas_2d(dim: &Ix2, stride: &Ix2, order: MemoryOrder) -> bool {
let (m, n) = dim.into_pattern();
let s0 = stride[0] as isize;
let s1 = stride[1] as isize;
let (inner_stride, outer_dim) = match order {
MemoryOrder::C => (s1, n),
MemoryOrder::F => (s0, m),
};
if !(inner_stride == 1 || outer_dim == 1) {
return false;
}
if s0 < 1 || s1 < 1 {
return false;
}
if (s0 > blas_index::max_value() as isize || s0 < blas_index::min_value() as isize)
|| (s1 > blas_index::max_value() as isize || s1 < blas_index::min_value() as isize)
{
return false;
}
if m > blas_index::max_value() as usize || n > blas_index::max_value() as usize {
return false;
}
true
}
#[cfg(feature = "blas")]
fn blas_layout<A, S>(a: &ArrayBase<S, Ix2>) -> Option<CBLAS_LAYOUT>
where
S: Data,
A: 'static,
S::Elem: 'static,
{
if blas_row_major_2d::<A, _>(a) {
Some(CBLAS_LAYOUT::CblasRowMajor)
} else if blas_column_major_2d::<A, _>(a) {
Some(CBLAS_LAYOUT::CblasColMajor)
} else {
None
}
}
#[cfg(test)]
#[cfg(feature = "blas")]
mod blas_tests {
use super::*;
#[test]
fn blas_row_major_2d_normal_matrix() {
let m: Array2<f32> = Array2::zeros((3, 5));
assert!(blas_row_major_2d::<f32, _>(&m));
assert!(!blas_column_major_2d::<f32, _>(&m));
}
#[test]
fn blas_row_major_2d_row_matrix() {
let m: Array2<f32> = Array2::zeros((1, 5));
assert!(blas_row_major_2d::<f32, _>(&m));
assert!(blas_column_major_2d::<f32, _>(&m));
}
#[test]
fn blas_row_major_2d_column_matrix() {
let m: Array2<f32> = Array2::zeros((5, 1));
assert!(blas_row_major_2d::<f32, _>(&m));
assert!(blas_column_major_2d::<f32, _>(&m));
}
#[test]
fn blas_row_major_2d_transposed_row_matrix() {
let m: Array2<f32> = Array2::zeros((1, 5));
let m_t = m.t();
assert!(blas_row_major_2d::<f32, _>(&m_t));
assert!(blas_column_major_2d::<f32, _>(&m_t));
}
#[test]
fn blas_row_major_2d_transposed_column_matrix() {
let m: Array2<f32> = Array2::zeros((5, 1));
let m_t = m.t();
assert!(blas_row_major_2d::<f32, _>(&m_t));
assert!(blas_column_major_2d::<f32, _>(&m_t));
}
#[test]
fn blas_column_major_2d_normal_matrix() {
let m: Array2<f32> = Array2::zeros((3, 5).f());
assert!(!blas_row_major_2d::<f32, _>(&m));
assert!(blas_column_major_2d::<f32, _>(&m));
}
}